【題目】某學校為了選拔學生參加“XX市中學生知識競賽,先在本校進行選拔測試,若該校有100名學生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;

2)該校推薦選拔測試成績在110以上的學生代表學校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

【答案】1;(2.

【解析】

試題(1)利用頻率分布直方圖求平均值,取各組的中間值,乘以各組的頻率再相加即得,即,其中為第組數(shù)據(jù)的頻率,是第組數(shù)據(jù)的中間值.2)該校學生的選拔測試分數(shù)在4人,分別記為A,BC,D,分數(shù)在2人,分別記為ab,將從這6人中隨機選取2人的所有可能結果一一列舉出來:(A,B),(A,C),(AD),(Aa),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b),共15個基本事件,找出其中符合題設條件的基本事件的個數(shù),二者相除即得所求概率.

1)設平均成績的估計值為,則:

4

2)該校學生的選拔測試分數(shù)在4人,分別記為A,B,CD,分數(shù)在2人,分別記為a,b,在則6人中隨機選取2人,總的事件有(A,B),(AC),(A,D),

Aa),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(Cb),(Da),(D,b),(a,b)共15個基本事件,其中符合題設條件的基本事件有8個.

故選取的這兩人的選拔成績在頻率分布直方圖中處于不同組的概率為..12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐SABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3

1)求直線AS與平面ABCD所成角的正弦值;

2)若線段CD上能找到點E,滿足AESE,則λ可能的取值有幾種情況?請說明理由;

3)在(2)的條件下,當λ為所有可能情況的最大值時,線段CD上滿足AESE的點有兩個,分別記為E1E2,求二面角E1SBE2的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的內切球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數(shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.

(附:若隨機變量,則,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲船在島A的正南B處,以的速度向正北航行,,同時乙船自島A出發(fā)以的速度向北偏東60°的方向駛去,當甲、乙兩船相距最近時,它們所航行的時間為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著銀行業(yè)的不斷發(fā)展,市場競爭越來越激烈,顧客對銀行服務質量的要求越來越高,銀行為了提高柜員員工的服務意識,加強評價管理,工作中讓顧客對服務作出評價,評價分為滿意、基本滿意、不滿意三種.某銀行為了比較顧客對男女柜員員工滿意度評價的差異,在下屬的四個分行中隨機抽出40人(男女各半)進行分析比較.對40人一月中的顧客評價“不滿意”的次數(shù)進行了統(tǒng)計,按男、女分為兩組,再將每組柜員員工的月“不滿意”次數(shù)分為5組:,,,得到如下頻數(shù)分布表.

分組

女柜員

2

3

8

5

2

男柜員

1

3

9

4

3

1)在答題卡所給的坐標系中分別畫出男、女柜員員工的頻率分布直方圖;分別求出男、女柜員員工的月平均“不滿意”次數(shù)的估計值,試根據(jù)估計值比較男、女柜員員工的滿意度誰高?

2)在抽取的40名柜員員工中:從“不滿意”次數(shù)不少于20的員工中隨機抽取3人,并用X表示隨機抽取的3人中女柜員工的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調研機構,對本地歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,將生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結果顯示,有人為“低碳族”,該人的年齡情況對應的頻率分布直方圖如圖.

1)根據(jù)頻率分布直方圖,估計這名“低碳族”年齡的平均值,中位數(shù);

2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個年齡段應各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極小值.

(1)求實數(shù)的值;

(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個零點,求實數(shù)的取值范圍.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,過對角線作平面交棱于點E,交棱于點F,則:

①平面分正方體所得兩部分的體積相等;

②四邊形一定是平行四邊形;

③平面與平面不可能垂直;

④四邊形的面積有最大值.

其中所有正確結論的序號為(

A.①④B.②③C.①②④D.①②③④

查看答案和解析>>

同步練習冊答案