已知雙曲線的方程為
,過左焦點F
1作斜率為
的直線交雙曲線的右支于點P,且
軸平分線段F
1P,則雙曲線的離心率是
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左右焦點分別為
,左頂點為
,若
,橢圓的離心率為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若
是橢圓上的任意一點,求
的取值范圍
(III)直線
與橢圓相交于不同的兩點
(均不是長軸的頂點),
垂足為H且
,求證:直線
恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知過拋物線
的焦點,斜率為
的直線交拋物線于
(
)兩點,且
(1)求該拋物線的方程;
(2)
為坐標(biāo)原點,
為拋物線上一點,若
,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
定長為3的線段AB兩端點A、B分別在
軸,
軸上滑動,M在線段AB上,且
(1)求點M的軌跡C的方程;
(2)設(shè)過
且不垂直于坐標(biāo)軸的動直線
交軌跡C于A、B兩點,問:線段
上
是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在
中,
,以
、
為焦點的橢圓恰好過
的中點
。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點
作直線
與圓
相交于
、
兩點,試探究點
、
能將圓
分割成弧長比值為
的兩段弧嗎?若能,求出直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的左右焦點分別為
,P為橢圓上一點,且
,則
橢圓的離心率e=________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)動點
在直線
上,
為坐標(biāo)原點,以
為直角邊,
為直角頂點作等
腰
,則動點
的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的漸近線為
,則雙曲線的離心率為___________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點(2,3)在雙曲線C:
(a>0,b>0)上,C的焦距為4,則它的離心率為______
_______.
查看答案和解析>>