【題目】已知兩點(diǎn),若直線上至少存在三個(gè)點(diǎn),使得是直角三角形,則實(shí)數(shù)的取值范圍是(

A. B. C. D.

【答案】D

【解析】

當(dāng)k=0時(shí),M、N、P三點(diǎn)共線,構(gòu)不成三角形,故k≠0.△MNP是直角三角形,由直徑對的圓周角是直角,知直線和以MN為直徑的圓有公共點(diǎn)即可,由此能求出實(shí)數(shù)k的取值范圍.

當(dāng)k=0時(shí),M、N、P三點(diǎn)共線,構(gòu)不成三角,

∴k≠0,

如圖所示,MNP是直角三角形,有三種情況:

當(dāng)M是直角頂點(diǎn)時(shí),直線上有唯一點(diǎn)P1點(diǎn)滿足條件;

當(dāng)N是直角頂點(diǎn)時(shí),直線上有唯一點(diǎn)P3滿足條件;

當(dāng)P是直角頂點(diǎn)時(shí),此時(shí)至少有一個(gè)點(diǎn)P滿足條件.

由直徑對的圓周角是直角,知直線和以MN為直徑的圓有公共點(diǎn)即可,

2,解得﹣≤k≤,且k≠0.

實(shí)數(shù)k的取值范圍是[﹣,0)∪(0,].

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的編號為1,2,3,4的球,從袋中隨機(jī)抽取一個(gè)球,將其編號記為m,然后從袋中余下的三個(gè)球中再隨機(jī)抽取一個(gè)球,將其編號記為n,則關(guān)于x的一元二次方程無實(shí)根的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若,且是曲線上不同的點(diǎn),滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱A1B1C1﹣ABC中,側(cè)棱與底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中點(diǎn).

(1)求證:A1B∥平面AMC1;
(2)求平面A1B1M與平面AMC1所成角的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐, 底面,底面為正方形, , 分別是的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為1538,則判斷框內(nèi)可填入的條件為(

A.n>6?
B.n>7?
C.n>8?
D.n>9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABC A 1B1C1的側(cè)棱長和底面邊長均為2,DBC 的中點(diǎn).

(1) 求證:AD⊥平面B1BC C1;

(2) 求證:A 1B//平面ADC1

(3) 求三棱錐C1 ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓=1(a>b>0)上的點(diǎn)P到左,右兩焦點(diǎn)F1,F2的距離之和為2,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過右焦點(diǎn)F2的直線l交橢圓于A,B兩點(diǎn),若y軸上一點(diǎn)M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#

(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?;若兩數(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請說明理由.

(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請求出甲船先?康母怕

查看答案和解析>>

同步練習(xí)冊答案