【題目】如圖,已知拋物線x2=2py(p>0)的焦點(diǎn)為F(0,1),過(guò)F的兩條動(dòng)直線AB,CD與拋物線交出A、B、C、D四點(diǎn),直線AB,CD的斜率存在且分別是k1(k1>0),k2.
(Ⅰ)若直線BD過(guò)點(diǎn)(0,3),求直線AC與y軸的交點(diǎn)坐標(biāo)
(Ⅱ)若k1﹣k2=2,求四邊形ACBD面積的最小值.
【答案】(Ⅰ)(0,);(Ⅱ)32.
【解析】
(Ⅰ)拋物線方程為,設(shè),,,,,直線代入拋物線方程,當(dāng)時(shí),得,,當(dāng)時(shí),得,進(jìn)而可得值為,寫出直線AC方程,令得,進(jìn)而得出結(jié)論;
(Ⅱ)設(shè),,,,,直線l的方程是,聯(lián)立拋物線方程,由韋達(dá)定理可得,,再求出點(diǎn)C到AB的距離d1,點(diǎn)D到AB的距離d2,,化簡(jiǎn)得,設(shè),求導(dǎo),分析單調(diào)性,進(jìn)而得出.
(Ⅰ)由題意可得拋物線方程為,
設(shè)直線代入拋物線方程得,
設(shè),,,,,
當(dāng)時(shí),得,,
當(dāng)時(shí),,
所以,
直線AC方程是,
令得,
故直線AC與y軸交點(diǎn)坐標(biāo)是;
(Ⅱ)設(shè)直線l的方程是,代入得,
設(shè),,,,,
則,,
,
點(diǎn)C到AB的距離,
點(diǎn)D到AB的距離,
則
,
設(shè),
則,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以在內(nèi)最小值,
故當(dāng),時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知, .
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大小;
(Ⅲ)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時(shí),表示收入完全平等,勞倫茨曲線為折線時(shí),表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,為的面積.將,稱為基尼系數(shù).對(duì)于下列說(shuō)法:
①越小,則國(guó)民分配越公平;
②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;
③若某國(guó)家某年的勞倫茨曲線近似為,則;
④若某國(guó)家某年的勞倫茨曲線近似為,則.
其中不正確的是:( )
A.①④B.②③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長(zhǎng)為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形的面積,求的值;
(Ⅲ)設(shè)點(diǎn)為的中點(diǎn),射線(為原點(diǎn))與橢圓交于點(diǎn),滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省開(kāi)展“精準(zhǔn)脫貧,攜手同行”的主題活動(dòng),某貧困縣統(tǒng)計(jì)了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計(jì)結(jié)果見(jiàn)下表.
走訪數(shù)量區(qū)間 | 頻數(shù) | 頻率 |
b | ||
10 | ||
38 | ||
a | 0.27 | |
9 | ||
總計(jì) | 100 | 1.00 |
(1)求a與b的值;
(2)根據(jù)表中數(shù)據(jù),估計(jì)這100名基層干部走訪數(shù)量的中位數(shù)(精確到個(gè)位);
(3)如果把走訪貧困戶不少于35戶視為“工作出色”,按照分層抽樣,從“工作出色”的基層干部中抽取4人,再?gòu)倪@4人中隨機(jī)抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若,對(duì)于給定實(shí)數(shù),總存在實(shí)數(shù),使得關(guān)于的方程恰有3個(gè)不同的實(shí)數(shù)根.
(i)求實(shí)數(shù)的取值范圍;
(ii)記,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(a)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(b)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒(méi)有提成,從第45單開(kāi)始,每完成一單提成5元,該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;
(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案(a)的概率為,選擇方案(b)的概率為.若甲、乙、丙三名騎手分別到該快餐連鎖店應(yīng)聘,三人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案(a)的概率;
(3)若僅從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,過(guò)的直線與y軸交于點(diǎn)M,滿足(O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.
(1)求橢圓C的方程;
(2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com