【題目】如圖,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F(xiàn)分別是邊AB,AC上的點,且 ,其中m,n∈(0,1).若EF,BC的中點分別為M,N,且m+4n=1,則 的最小值為

【答案】
【解析】解:連接AM、AN, ∵等腰三角形ABC中,AB=AC=1,A=120°,
=| || |cos120°=﹣
∵AM是△AEF的中線,
= )= +
同理,可得 = + ),
由此可得 = = (1﹣m) + (1﹣n)
=[ (1﹣m) + (1﹣n) ]2= (1﹣m)2+ (1﹣m)(1﹣n) + (1﹣n)2
= (1﹣m)2 (1﹣m)(1﹣n)+ (1﹣n)2 ,
∵m+4n=1,可得1﹣m=4n
∴代入上式得 = ×(4n)2 ×4n(1﹣n)+ (1﹣n)2= n2 n+
∵m,n∈(0,1),
∴當(dāng)n= 時, 的最小值為 ,此時 的最小值為
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 為偶函數(shù)
(1)求實數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[ , ](m>0,n>0)時,若函數(shù)f(x)的值域[2﹣3m,2﹣3n],求實數(shù)m,n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求證:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分別是棱AD、AA、AB的中點。

證明:(1)直線EE//平面FCC;

(2)求二面角B-FC-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在2016年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,被抽取學(xué)生的成績均不低于160分,且低于185分,如圖是按成績分組得到的頻率分布直方圖.

(1)為了能選拔出優(yōu)秀的學(xué)生,該校決定在筆試成績較高的第3組、第4組、第5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(2)在(1)的前提下,學(xué)校決定在6名學(xué)生中隨機抽取2名學(xué)生由考官A面試,求第4組至少有一名學(xué)生被考官A面試的概.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點P變軌進(jìn)入以月球球心F為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點第二次變軌進(jìn)入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
①a1+c1=a2+c2;②a1﹣c1=a2﹣c2;③c1a2>a1c2;④
其中正確式子的序號是(

A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩個焦點為
的曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:實數(shù)x滿足x2﹣4ax+3a2<0(其中a>0),命題q:實數(shù)x滿足
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案