(16分)設(shè)函數(shù),。

⑴若函數(shù)圖象上的點(diǎn)到直線距離的最小值是,求的值。

⑵關(guān)于的不等式的解集中的整數(shù)恰好有3個(gè),求實(shí)數(shù)的取值范圍。

 

【答案】

.⑵.

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)與不等式以及點(diǎn)到直線的距離的綜合運(yùn)用。

(1)因?yàn)楹瘮?shù)圖象上的點(diǎn)到直線距離的最小值是,則因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012090811225239878329/SYS201209081123182496476482_DA.files/image006.png">,所以,令,解得,此時(shí),則點(diǎn)到直線的距離最小可得結(jié)論。

(2)由于關(guān)于的不等式的解集中的整數(shù)恰好有3個(gè),等價(jià)于恰好有三個(gè)整數(shù)解,等價(jià)轉(zhuǎn)化思想得到結(jié)論。

⑴因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012090811225239878329/SYS201209081123182496476482_DA.files/image006.png">,所以,令,解得,此時(shí),則點(diǎn)到直線的距離最小,即解得.

⑵不等式的解集中的整數(shù)解恰好有3個(gè),等價(jià)于恰好有三個(gè)整數(shù)解,故,即,,所以,又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012090811225239878329/SYS201209081123182496476482_DA.files/image020.png">,所以,解得.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+
a
2x
-1
(a為實(shí)數(shù)).
(Ⅰ)當(dāng)a=0時(shí),求方程|f(x)|=
1
2
的根;
(Ⅱ)當(dāng)a=-1時(shí),
(。┤魧(duì)于任意t∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范圍;
(ⅱ)設(shè)函數(shù)g(x)=2x+b,若對(duì)任意的x1∈[0,1],總存在著x2∈[0,1],使得f(x1)=g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,(x∈N*),其導(dǎo)函數(shù)記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數(shù),x1≠x2.設(shè)函數(shù)g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)無極值點(diǎn),其導(dǎo)函數(shù)g′(x)有零點(diǎn),求m的值;
(Ⅲ)求函數(shù)g(x)在x∈[0,a]的圖象上任一點(diǎn)處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),若同時(shí)滿足以下三個(gè)條件:
①f(1)=1; 
②?x∈[0,1],總有f(x)≥0; 
③當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),都有f(x1+x2)≥f(x1)+f(x2),則稱函數(shù)f(x)為理想函數(shù).
(Ⅰ)若函數(shù)f(x)為理想函數(shù),求f(0).
(Ⅱ)判斷函數(shù)g(x)=2x-1(x∈[0,1])和函數(shù)h(x)=sin
π2
x
(x∈[0,1])是否為理想函數(shù)?若是,予以證明;若不是,說明理由.
(III)設(shè)函數(shù)f(x)為理想函數(shù),若?x0∈[0,1],使f(x0)∈[0,1],且f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.請(qǐng)你根據(jù)這一發(fā)現(xiàn),求:函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
對(duì)稱中心為
1
2
,1)
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•溫州一模)設(shè)函數(shù)y=f(x),我們把滿足方程f(x)=0的值x叫做函數(shù)y=f(x)的零點(diǎn).現(xiàn)給出函數(shù)f(x)=x3-3x2+ax+a2-10,若它是R上的單調(diào)函數(shù),且1是它的零點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)Q1(x1,0),若過P1(x1,f(x1))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q2(x2,0),再過P2(x2,f(x2))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q3(x3,0),…,依此下去,過Pn(xn,f(xn))(n∈N*)作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Qn+1(xn+1,0),….
若x1=2,xn>1,求xn

查看答案和解析>>

同步練習(xí)冊(cè)答案