已知斜三棱柱的各棱長(zhǎng)均為2, 側(cè)棱與底面所成角為,且側(cè)面底面.

(1)證明:點(diǎn)在平面上的射影的中點(diǎn);
(2)求二面角的大。
(3)求點(diǎn)到平面的距離.
(1)見(jiàn)解析  (2)      (3)

【錯(cuò)解分析】對(duì)于立體幾何的角和距離,一定要很好的理解“作,證,”三個(gè)字
【正解】解:(1)證明:過(guò)B1點(diǎn)作B1O⊥BA!邆(cè)面ABB1A1⊥底面ABC

∴A1O⊥面ABC ∴∠B1BA是側(cè)面BB1與底面ABC傾斜角∴∠B1BO= 
在Rt△B1OB中,BB1=2,∴BO=BB1=1
又∵BB1=AB,∴BO=AB ∴O是AB的中點(diǎn),
即點(diǎn)B1在平面ABC上的射影O為AB的中點(diǎn).
(2)連接AB1過(guò)點(diǎn)O作OM⊥AB1,連線CM,OC,
∵OC⊥AB,平面ABC⊥平面AA1BB1∴OC⊥平面AABB.∴OM是斜線CM在平面AA1B1B的射影 ∵OM⊥AB1∴AB1⊥CM ∴∠OMC是二面角C—AB1—B的平面角
在Rt△OCM中,OC=,OM=
∴∠OMC=∴二面角C—AB1—B的大小為
(3)過(guò)點(diǎn)O作ON⊥CM,∵AB1⊥平面OCM,∴AB1⊥ON
∴ON⊥平面AB1C!郞N是O點(diǎn)到平面AB1C的距離

連接BC1與B1C相交于點(diǎn)H,則H是BC1的中點(diǎn),∴B與C1到平面ACB1的相導(dǎo)。
又∵O是AB的中點(diǎn) ∴B到平面AB1C的距離是O到平面AB1C距離的2倍
∴點(diǎn)到平面AB1C距離為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在空間中,設(shè)是三條不同的直線,是兩個(gè)不同的平面,在下列命題:
①若兩兩相交,則確定一個(gè)平面
②若,且,則
③若,且,則
④若,且,則
其中正確的命題的個(gè)數(shù)是(   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點(diǎn)的等腰直角三角形,底面為直角梯形,,,上一點(diǎn),且.

(Ⅰ)求證;
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,

(1)求證:FC∥平面AED
(2)若,當(dāng)二面角為直二面角時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在三棱柱中,底面是正三角形,側(cè)棱底面,點(diǎn)是側(cè)面 的中心,若,則直線與平面所成角的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將銳角為且邊長(zhǎng)是2的菱形,沿它的對(duì)角線折成60°的二面角,則(      )
①異面直線所成角的大小是       .
②點(diǎn)到平面的距離是       .
A.90°,B.90°,C.60°,D.60°,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)三棱錐中,,

(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一個(gè)三棱柱形容器中盛有水,且側(cè)棱AA1=8.若側(cè)面AA1B1B水平放置時(shí),液面恰好過(guò)ACBC,A1C1,B1C1的中點(diǎn).則當(dāng)?shù)酌鍭BC水平放置時(shí),液面高為(       )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,平面⊥平面是直角三角形,,四邊形是直角梯形,其中,,,且,的中點(diǎn),分別是的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案