在△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上的高,在以下結(jié)論中:
;
;
;

其中正確結(jié)論的序號是   
【答案】分析:根據(jù)向量加法的三角形運算法則,得到兩個向量的數(shù)量積,得到①不正確,根據(jù)向量數(shù)量積的意義得到②不正確,③正確,根據(jù)向量的減法和余弦定理得到④正確,
解答:解:在△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上的高,在以下結(jié)論中:
,故①不正確,
,故②不正確,
,故③正確,
,故④正確,
綜上可知③④正確,
故答案為:③④
點評:本題考查向量在幾何中的應用,本題解題的關鍵是熟練向量的定義和向量數(shù)量積的性質(zhì)和運算律.本題是一個中檔題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案