【題目】已知函數(shù),,其中.

(1)求過點和函數(shù)的圖像相切的直線方程;

(2)若對任意,恒成立,的取值范圍

(3)若存在唯一的整數(shù),使得,的取值范圍.

【答案】(1),.(2).(3).

【解析】試題分析:(1)先設(shè)切點為切線斜率為,再建立切線方程為,將代入方程可得,即,進而求得切線方程為:.

2)將問題轉(zhuǎn)化為對任意恒成立,①當,,利用導數(shù)工具求得,故此時

②當恒成立,故此時;③當,,

利用導數(shù)工具求得,故此時.綜上.

(3)因為,由(2)知,

,原命題等價于存在唯一的整數(shù)成立,利用導數(shù)工具求得;當,原命題等價于存在唯一的整數(shù)成立,利用導數(shù)工具求得.綜上.

試題解析:

(1)設(shè)切點為,則切線斜率為

所以切線方程為,因為切線過

所以,

化簡得,解得.

,切線方程為,

,切線方程為.

(2)由題意,對任意恒成立,

①當,

,,

,故此時.

②當恒成立,故此時.

③當,,

,故此時.綜上.

(3)因為,

由(2)知

,

,存在唯一的整數(shù)使得,

等價于存在唯一的整數(shù)成立,

因為最大,,所以當,至少有兩個整數(shù)成立

所以.

,存在唯一的整數(shù)使得,

等價于存在唯一的整數(shù)成立,

因為最小,所以當,至少有兩個整數(shù)成立

所以當,沒有整數(shù)成立,所有.

綜上.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點在橢圓上.若點,且.

(1)求橢圓的離心率;

(2)設(shè)橢圓的焦距為4,,是橢圓上不同的兩點,線段的垂直平分線為直線,且直線不與軸重合.

①若點,直線過點,求直線的方程;

② 若直線過點,且與軸的交點為,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)查,新街口某新開業(yè)的商場在過去一個月內(nèi)(以30天計),顧客人數(shù)(千人)與時間(天)的函數(shù)關(guān)系近似滿足),人均消費(元)與時間(天)的函數(shù)關(guān)系近似滿足

(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關(guān)系式;

(2)求該商場日收益的最小值(千元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校參加夏令營的同學有3名男同學3名女同學,其所屬年級情況如下表:

高一年級

高二年級

高三三年級

男同學

女同學

現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同)

1)用表中字母寫出這個試驗的樣本空間;

2)設(shè)為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,寫出事件的樣本點,并求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點為某沿海城市的高速公路出入口直線為海岸線,,是以為圓心半徑為的圓弧型小路.該市擬修建一條從通往海岸的觀光專線,其中上異于的一點,平行設(shè).

(1)證明:觀光專線的總長度隨的增大而減小;

(2)已知新建道路的單位成本是翻新道路的單位成本的2倍.當取何值時觀光專線的修建總成本最低?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有四輛汽車,其中車的車牌尾號為0,兩輛車的車牌尾號為6,車的車牌尾號為5,已知在非限行日,每輛車都有可能出車或不出車.已知兩輛汽車每天出車的概率為,兩輛汽車每天出車的概率為,且四輛汽車是否出車是相互獨立的.

該公司所在地區(qū)汽車限行規(guī)定如下

(1)求該公司在星期四至少有2輛汽車出車的概率;

(2)設(shè)表示該公司在星期一和星期二兩天出車的車輛數(shù)之和的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,網(wǎng)絡(luò)搜題軟件走進了生活,有教育工作者認為,網(wǎng)搜答案可以起到幫助人們學習的作用,但對多數(shù)學生來講,過度網(wǎng)搜答案容易養(yǎng)成依賴心理,對學習能力造成損害.為了了解學生網(wǎng)搜答案的情況,某學校對學生一月內(nèi)進行網(wǎng)搜答案的次數(shù)進行了問卷調(diào)查,并從參與調(diào)查的學生中抽取了男、女生各100人進行抽樣分析,制成如下頻率分布直方圖:

記事件男生1月內(nèi)網(wǎng)搜答案次數(shù)不高于30,根據(jù)頻率分布直方圖得到的估計值為0.65

(1)的值;

(2)若一學生在1月內(nèi)網(wǎng)搜答案次數(shù)超過50次,則稱該學生為依賴型,現(xiàn)從樣本內(nèi)的依賴型學生中,抽取3人談話,求抽取的女生人數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項都不為零的無窮數(shù)列滿足: ;

(1)證明為等差數(shù)列,并求時數(shù)列中的最大項:

(2)若為數(shù)列中的最小項,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某理財公司有兩種理財產(chǎn)品AB,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品A

投資結(jié)果

獲利40%

不賠不賺

虧損20%

概率

產(chǎn)品B

投資結(jié)果

獲利20%

不賠不賺

虧損10%

概率

p

q

注:p>0,q>0

(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數(shù)p的取值范圍;

(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?

查看答案和解析>>

同步練習冊答案