【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

41

47

415

421

430

溫差

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;

2)從這5天中任選2天,若選取的是41日與430日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出y關于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:回歸直線的斜率和截距的最小二乘估計公式分別為,.

【答案】12;(3)所得到的線性回歸方程是可靠的.

【解析】

用列舉法求的基本事件數(shù),計算所求的概率值;

由數(shù)據(jù)計算、的值,求出回歸系數(shù),寫出線性回歸方程;

利用回歸方程計算8的值,驗證誤差是否滿足條件即可.

1)由題意,mn的所有取值范圍有:

,,,

,,共有10個;

m、n均不小于25”為事件A,則事件A包含的基本事件有

,,

所以,

故事件A的概率為;

2)由數(shù)據(jù)得,,

;

所以y關于x的線性回歸方程為

時,,,

時,.

所得到的線性回歸方程是可靠的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過橢圓右焦點的直線交橢圓與AB兩點,為其左焦點,已知的周長為8,橢圓的離心率為.

1)求橢圓的方程;

2)是否存在圓心在原點的圓,使得該圓任意一條切線與橢圓恒有兩個交點?若存在,求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)

C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學運算最強

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,PB的中點,是等邊三角形,平面平面.

1)求證:平面

2)求CP與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解該校高三年級學生數(shù)學科學習情況,對一模考試數(shù)學成績進行分析,從中抽取了名學生的成績作為樣本進行統(tǒng)計,該校全體學生的成績均在,按照,,,,,的分組作出頻率分布直方圖如圖(1)所示,樣本中分數(shù)在內的所有數(shù)據(jù)的莖葉圖如圖(2)所示.根據(jù)上級統(tǒng)計劃出預錄分數(shù)線,有下列分數(shù)與可能被錄取院校層次對照表為表(3).

分數(shù)

可能被錄取院校層次

?

本科

重本

圖(3

1)求和頻率分布直方圖中的,的值;

2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學生中任取3人,求至少有一人是可能錄取為重本層次院校的概率;

3)在選取的樣本中,從可能錄取為重本和?苾蓚層次的學生中隨機抽取3名學生進行調研,用表示所抽取的3名學生中為重本的人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內鋪設三條小路、,要求點的中點,點在邊上,點在邊時上,且.

1)設,試求的周長關于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經核算,三條路每米鋪設費用均為元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, , .

(Ⅰ)求數(shù)列, 的通項公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,平面,分別是的中點.

1)證明:;

2)取,若上的動點,與面所成最大角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了弘揚我國優(yōu)秀傳統(tǒng)文化,某中學廣播站在中國傳統(tǒng)節(jié)日:春節(jié)、元宵節(jié)、清明節(jié)、端午節(jié)、中秋節(jié)這5個節(jié)日中隨機選取2個節(jié)日來講解其文化內涵,則春節(jié)被選中的概率是______.

查看答案和解析>>

同步練習冊答案