精英家教網 > 高中數學 > 題目詳情

【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數量(單位:萬只)與相應年份(序號)的數據表和散點圖(如圖所示),根據散點圖,發(fā)現有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數(單位:個)關于的回歸方程.

年份序號x

1

2

3

4

5

6

7

8

9

年養(yǎng)殖山羊y/萬只

1.2

1.5

1.6

1.6

1.8

2.5

25

2.6

2.7

根據表中的數據和所給統(tǒng)計量,求關于的線性回歸方程(參考統(tǒng)計量:,);

附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為,.

【答案】

【解析】

由已知求出,根據所給公式求出,即可求出關于的線性回歸方程.

解:根據題意,設關于的線性回歸方程為,

,

所以,

所以關于的線性回歸方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】湖北省2019年公布了新的高考方案,實行“3+1+2”模式.某學生按方案要求任意選擇,則該生選擇考歷史和化學的概率為_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有4名學生參加演講比賽,有兩個題目可供選擇,組委會決定讓選手通過擲一枚質地均勻的骰子選擇演講的題目,規(guī)則如下:選手擲出能被3整除的數則選擇題目,擲出其他的數則選擇題目.

(1)求這4個人中恰好有1個人選擇題目的概率;

(2)用分別表示這4個人中選擇題目的人數,記,求隨機變量的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據國際海洋安全規(guī)定:兩國軍艦正常狀況下(聯(lián)合軍演除外),在公海上的安全距離為20(即距離不得小于20),否則違反了國際海洋安全規(guī)定.如圖,在某公海區(qū)域有兩條相交成60°的直航線,,交點是,現有兩國的軍艦甲,乙分別在,上的處,起初,,后來軍艦甲沿的方向,乙軍艦沿的方向,同時以40的速度航行.

1)起初兩軍艦的距離為多少?

2)試判斷這兩艘軍艦是否會違反國際海洋安全規(guī)定?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)共有員工10000人,下圖是通過隨機抽樣得到的該企業(yè)部分員工年收入(單位:萬元)頻率分布直方圖.

(1)根據頻率分布直方圖計算樣本的平均數.并以此估算該企業(yè)全體員工中年收入不低于樣本平均數的人數(同一組中的數據以這數據所在區(qū)間中點的值作代表);

(2)若抽樣調查中收入在萬元員工有2人,求在收入在萬元的員工中任取3人,恰有2位員工收入在萬元的概率;

(3)若抽樣調查的樣本容量是400人,在這400人中:年收入在萬元的員工中具有大學及大學以上學歷的有,年收入在萬元的員工中不具有大學及大學以上學歷的有,將具有大學及大學以上學歷和不具有大學及大學以上學歷的員工人數填入下面的列聯(lián)表,并判斷能否有的把握認為具有大學及大學以上學歷和不具有大學及大學以上學歷的員工收入有差異?

具有大學及大學以上學歷

不具有大學及大學以上學歷

合計

萬元員工

萬元員工

合計

附:;

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應德智體美勞的教育方針,唐徠回中高一年級舉行了由全體學生參加的一分鐘跳繩比賽,計分規(guī)則如下:

每分鐘跳繩個數

185以上

得分

16

17

18

19

20

年級組為了了解學生的體質,隨機抽取了100名學生,統(tǒng)計了他的跳繩個數,并繪制了如下樣本頻率直方圖:

1)現從這100名學生中,任意抽取2人,求兩人得分之和小于35分的概率(結果用最簡分數表示);

2)若該校高二年級2000名學生,所有學生的一分鐘跳繩個數近似服從正態(tài)分布,其中,為樣本平均數的估計值(同一組中數據以這組數據所在區(qū)間的中點值為代表).利用所得到的正態(tài)分布模型解決以下問題:

①估計每分鐘跳繩164個以上的人數(四舍五入到整數)

②若在全年級所有學生中隨機抽取3人,記每分鐘跳繩在179個以上的人數為,求的分布列和數學期望與方差.

(若隨機變量服從正態(tài)分布,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合,. 若,且對任意,均有,則集合中元素個數的最大值為( )

A. 5 B. 6 C. 11 D. 13

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中有6個球,其中4個白球,2個紅球,從袋中任意取出兩球,求下列事件的概率:

1A:取出的兩球都是白球;

2B:取出的兩球1個是白球,另1個是紅球.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的右頂點為A,下頂點為B,過A、O、BO為坐標原點)三點的圓的圓心坐標為

(1)求橢圓的方程;

(2)已知點Mx軸正半軸上,過點BBM的垂線與橢圓交于另一點N,若∠BMN=60°,求點M的坐標.

查看答案和解析>>

同步練習冊答案