已知函數(shù)f(x)=x2ln|x|,
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于x的方程f(x)=kx-1有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
分析:(Ⅰ)根據(jù)函數(shù)f(x)的解析式,求得f(-x),看f(x)與f(x)的關(guān)系式,進(jìn)而判斷函數(shù)的奇偶性.
(Ⅱ)先看當(dāng)x>0時(shí),根據(jù)導(dǎo)函數(shù)f'(x)大于0或小于0時(shí)的f(x)的單調(diào)區(qū)間,再根據(jù)函數(shù)的奇偶性判斷求得其它的單調(diào)區(qū)間.
(Ⅲ)要使方程f(x)=kx-1有實(shí)數(shù)解,即要使函數(shù)y=f(x)的圖象與直線y=kx-1有交點(diǎn),先看當(dāng)k>0時(shí),用導(dǎo)函數(shù)求出當(dāng)直線y=kx-1與f(x)的圖象相切時(shí)k的值,再根據(jù)對(duì)稱(chēng)性求出k<0時(shí)直線y=kx-1與f(x)的圖象相切時(shí)k的值,進(jìn)而求出f(x)=kx-1有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
解答:解:(Ⅰ)函數(shù)f(x)的定義域?yàn)閧x|x∈R且x≠0}
f(-x)=(-x)
2ln|-x|=x
2lnx=f(x)
∴f(x)為偶函數(shù)
(Ⅱ)當(dāng)x>0時(shí),
f′(x)=2x•lnx+x2•=x•(2lnx+1)若
0<x<e-,則f'(x)<0,f(x)遞減;
若
x>e-,則f'(x)>0,f(x)遞增.
遞增區(qū)間是
( -e- , 0)和
(e- , +∞);
遞減區(qū)間是
(-∞ , -e-)和
(0 , e-).
(Ⅲ)要使方程f(x)=kx-1有實(shí)數(shù)解,即要使函數(shù)y=f(x)的圖象與直線y=kx-1有交點(diǎn).
函數(shù)f(x)的圖象如圖.
先求當(dāng)直線y=kx-1與f(x)的圖象相切時(shí)k的值.
當(dāng)k>0時(shí),f'(x)=x•(2lnx+1)
設(shè)切點(diǎn)為P(a,f(a)),則切線方程為y-f(a)=f'(a)(x-a),
將x=0,y=-1代入,得-1-f(a)=f'(a)(-a)
即a
2lna+a
2-1=0(*)
顯然,a=1滿(mǎn)足(*)
而當(dāng)0<a<1時(shí),a
2lna+a
2-1<0,
當(dāng)a>1時(shí),a
2lna+a
2-1>0
∴(*)有唯一解a=1
此時(shí)k=f'(1)=1
再由對(duì)稱(chēng)性,k=-1時(shí),y=kx-1也與f(x)的圖象相切,
∴若方程f(x)=kx-1有實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是(-∞,-1]∪[1,+∞).
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合運(yùn)用.在解決函數(shù)的單調(diào)性問(wèn)題時(shí),常利用導(dǎo)函數(shù)的性質(zhì).