在[-2,2]上的最大值是              

 

【答案】

3

【解析】,

.所以最大值為3.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點為坐標原點,橢圓C′的對稱軸是坐標軸,拋物線C在x軸上的焦點恰好是橢圓C′的焦點
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知動直線l過點p(3,0),交拋物線C于A,B兩點,直線l′:x=2被以AP為直徑的圓截得的弦長為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點E的軌跡為D,直線AB與軌跡D交于點F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1在x=-2與x=1處有極值.
(1)求函數(shù)f(x)的解析式;    
(2)求f(x)在[-3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市邛崍市高三(上)12月統(tǒng)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:…+f(xn))

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省煙臺市高三(上)第一學段檢測(期中)數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:…+f(xn))

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省泰州市姜堰市高三(上)期中數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:…+f(xn))

查看答案和解析>>

同步練習冊答案