下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′;
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π
12
)=0;
③若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),則g′(2013)=2012;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點”的充要條件;
⑤函數(shù)f(x)=
sinx
2+cosx
的單調(diào)遞增區(qū)間是(2kπ-
3
,2kπ+
3
)(k∈Z).
其中真命題為
 
.(填序號)
考點:命題的真假判斷與應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:分別利用導(dǎo)數(shù)的運算以及導(dǎo)數(shù)的應(yīng)用進行判斷即可.
解答: 解:①[f(2x)]′=f′(2x)(2x)′=2f′(2x),所以①錯誤.
②因為h(x)=cos4x-sin4x=(cos2x+sin2x)(cos2x-sin2x)=cos2x,
所以h'(x)=-2sin2x,即h′(
π
12
)=-2sin(2×
π
12
)=-2sin
π
6
=-2×
1
2
=-1
,所以②錯誤.
③因為g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),
所以g'(x)=[(x-1)(x-2)…(x-2012)]+(x-2013)?[(x-1)(x-2)…(x-2012)]'
所以g'(2013)=(2013-1)(2013-2)…(2013-2012)=1×2×…×2012=2012!,所以③正確.
④三次函數(shù)f(x)=ax3+bx2+cx+d的導(dǎo)數(shù)為f′(x)=3ax2+2bx+c,(a≠0),若f(x)有極值點,則判別式△=4b2-12ac>0,
即b2-3ac>0,故所以④錯誤.
⑤函數(shù)的導(dǎo)數(shù)為f′(x)=
cosx(2+cosx)-sinx(-sinx)
(2+cosx)2
=
1+2cosx
(2+cosx)2
,
f′(x)=
1+2cosx
(2+cosx)2
>0
得1+2cosx>0,即cosx>-
1
2
,所以2kπ-
3
<x<2kπ+
3
,k∈Z
,
即函數(shù)的單調(diào)遞增區(qū)間為[2kπ-
3
,2kπ+
3
],k∈Z
,所以⑤正確.
故答案為:③⑤.
點評:本題主要考查與導(dǎo)數(shù)有關(guān)的命題的真假判斷,要求熟練掌握導(dǎo)數(shù)的運算以及導(dǎo)數(shù)的應(yīng)用,比較綜合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}中,Sn=
1
2
(an+
1
an
).
(1)求a1,a2,a3
(2)猜想an的表達式并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線關(guān)于x軸對稱,它的頂點在坐標原點O,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點F的距離為3,延長MF交拋物線于點N.
(1)求拋物線的方程;
(2)求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù),其中數(shù)字1,2相鄰.這樣的五位數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的個數(shù)為
 
 個
①一個命題的逆命題為真,它的否命題也一定為真;
②若一個命題的否命題為假,則它本身一定為真;
x>1
y>2
x+y>3
xy>2
的充要條件;
④“x=3”是“|x|=3”成立的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于二項式(x-1)2013,有下列命題:
①該二項展開式中非常數(shù)項的系數(shù)之和是1;
②該二項展開式中第六項為
C
6
2013
x2007
;
③該二項展開式中系數(shù)最大的項為第1008項;
④當x=2013時,(x-1)2013除以2013的余數(shù)是2012.
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為[a,b]的函數(shù)y=f(x)圖象的兩個端點為A、B,M(x,y)是f(x)圖象上任意一點,其中x=λa+(1-λ)b(x∈R).已知
ON
OA
+(1-λ)
OB
,若|
MN
|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2-3x+2在[1,3]上k階線性相似,則實數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式:(3x+1)(-x2+5x-6)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+2
x
,x∈[1,3],若f(x)>2a對x∈[1,3]恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案