【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)時,是什么曲線?
(2)當(dāng)時,求與的公共點的直角坐標(biāo).
【答案】(1)曲線表示以坐標(biāo)原點為圓心,半徑為1的圓;(2).
【解析】
(1)利用消去參數(shù),求出曲線的普通方程,即可得出結(jié)論;
(2)當(dāng)時,,曲線的參數(shù)方程化為為參數(shù)),兩式相加消去參數(shù),得普通方程,由,將曲線化為直角坐標(biāo)方程,聯(lián)立方程,即可求解.
(1)當(dāng)時,曲線的參數(shù)方程為為參數(shù)),
兩式平方相加得,
所以曲線表示以坐標(biāo)原點為圓心,半徑為1的圓;
(2)當(dāng)時,曲線的參數(shù)方程為為參數(shù)),
所以,曲線的參數(shù)方程化為為參數(shù)),
兩式相加得曲線方程為,
得,平方得,
曲線的極坐標(biāo)方程為,
曲線直角坐標(biāo)方程為,
聯(lián)立方程,
整理得,解得或(舍去),
,公共點的直角坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點.射線分別交于點,動點滿足直線與軸垂直,直線與軸垂直.
(1)求動點的軌跡的方程;
(2)過點作直線交曲線與點,射線與點,且交曲線于點.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校近幾年來通過“書香校園”主題系列活動,倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)時,是什么曲線?
(2)當(dāng)時,求與的公共點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+1.
(1)若f(x)≤2x+c,求c的取值范圍;
(2)設(shè)a>0時,討論函數(shù)g(x)=的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:
則下面結(jié)論中正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少
B.新農(nóng)村建設(shè)后,其他收入增加了
C.新農(nóng)村建設(shè)后,養(yǎng)殖收入沒有增加
D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=有如下四個命題:
①f(x)的圖像關(guān)于y軸對稱.
②f(x)的圖像關(guān)于原點對稱.
③f(x)的圖像關(guān)于直線x=對稱.
④f(x)的最小值為2.
其中所有真命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標(biāo)為2.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com