設(shè)p:m≥-2;q:函數(shù)f(x)=log2(2x+m)的圖象過點(1,2),則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義,即可得到結(jié)論.
解答: 解:若函數(shù)f(x)=log2(2x+m)的圖象過點(1,2),
則f(1)=log2(2+m)=2,即2+m=4,
解得m=2,此時m≥-2,成立.即必要性成立,充分性不成立,
故p是q的必要不充分條件,
故選:B.
點評:本題主要考查充分條件和必要條件的判定,利用對數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足不等式組
2x-y≤0
x+y-3≥0
x+2y≤6
,則z=x-y的最小值為(  )
A、-1
B、-
6
5
C、-3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=
3
i+1
1+i
(其中i是虛數(shù)單位),則|z|=( 。
A、2
2
B、
2
C、1
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個由實數(shù)組成的等比數(shù)列,它的前6項和是前3項和的9倍,則此數(shù)列的公比為( 。
A、2
B、3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)奇函數(shù)f(x)=cos(ωx+φ)-
3
sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,則ω,φ分別是(  )
A、2,
π
3
B、
1
2
π
6
C、
1
2
,
π
3
D、2,
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設(shè)你家訂了一份早報,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去上班的時間在早上7:00-8:00之間,則你父親離開家前能得到報紙的概率為(  )
A、
1
3
B、
7
12
C、
7
8
D、
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=
|x+1|-2
的定義域是(-∞,-3]∪[1,+∞);命題q:若a,b∈R,則|a+b|<1是|a|+|b|<1的充分而不必要條件,則下列命題中為真命題的是(  )
A、p∧q
B、(¬p)∨q
C、p∨(¬q)
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{xn}滿足:x1=
5
3
,xn+1=
xn2+1
2xn
(n∈N*).記bn=log2
xn-1
xn+1
)(n∈N*).
(1)求證:數(shù)列{bn}成等比數(shù)列,并求數(shù)列{bn}的通項公式;
(2)記cn=-nbn(n∈N*),求數(shù)列{cn}的前n項和公式Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若AB=2,AC=3,cosA=
1
3
,求此三角形外接圓的半徑R的長.

查看答案和解析>>

同步練習冊答案