【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個(gè)不同的零點(diǎn),則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.
【答案】B
【解析】令y=f(x)﹣g(x)=0,即有f(x)﹣(ax2﹣x+2)=0,則f(x)+x﹣2=ax2 ,
而f(x)+x﹣2= ,
作函數(shù)y=f(x)+x﹣2與函數(shù)y=ax2的圖象如下,
當(dāng)a<0時(shí),y=f(x)+x﹣2與y=ax2的圖象恒有兩個(gè)交點(diǎn);
當(dāng)a>0時(shí),當(dāng)y=ax2的圖象過(guò)點(diǎn)(2,2),可得a= ,
由圖象可得0<a<1時(shí),y=f(x)+x﹣2與y=ax2的圖象有兩個(gè)交點(diǎn).
綜上可得,實(shí)數(shù)a的取值范圍是 ,故答案為: .
根據(jù)題意整理f(x)+x﹣2=ax2的解析式并在同一坐標(biāo)系中畫(huà)出分段函數(shù)的圖像,再由a的正負(fù)決定拋物線(xiàn)的開(kāi)口方向找出兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù),進(jìn)而可得到恰好有2個(gè)不同的零點(diǎn),實(shí)數(shù) a 的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形 中, , , , 為線(xiàn)段 的中點(diǎn),將 沿 折起,使平面 平面 ,得到幾何體 .
(1)若 分別為線(xiàn)段 的中點(diǎn),求證: 平面 ;
(2)求證: 平面 ;
(3)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0),B(3,0),C(3,4),則△ABC的外接圓方程是( )
A.(x-2)2+(y-2)2=20
B.(x-2)2+(y-2)2=10
C.(x-2)2+(y-2)2=5
D.(x-2)2+(y-2)2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,三角A,B,C的對(duì)邊分別為a,b,c,其滿(mǎn)足(a﹣3b)cosC=c(3cosB﹣cosA),AF=2FC,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱 中, ,底面三角形 是邊長(zhǎng)為2的等邊三角形, 為 的中點(diǎn).
(1)求證: ;
(2)若直線(xiàn) 與平面 所成的角為 ,求三棱柱 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , . 在 上有最大值9,最小值4.
(1)求實(shí)數(shù) 的值;
(2)若不等式 在 上恒成立,求實(shí)數(shù) 的取值范圍;
(3)若方程 有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為 t為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線(xiàn)C的極坐標(biāo)方程為 . (Ⅰ)求曲線(xiàn)C的直角坐標(biāo)方程;
(Ⅱ)求直線(xiàn)l被曲線(xiàn)C所截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線(xiàn) ﹣ =1(a>0,b>0)上任意一點(diǎn)P可向圓x2+y2=( )2作切線(xiàn)PA,PB,若存在點(diǎn)P使得 =0,則雙曲線(xiàn)的離心率的取值范圍是( )
A.[ ,+∞)
B.(1, ]
C.[ , )
D.(1, )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com