已知函數(shù)).

(1)求的單調(diào)區(qū)間;

(2)如果是曲線上的任意一點,若以為切點的切線的斜率恒成立,求實數(shù)的最小值;

(3)討論關(guān)于的方程的實根情況.

 

【答案】

(1)單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為;(2)的最小值為;(3)時,方程有兩個實根,當(dāng)時,方程有一個實根,當(dāng)時,方程無實根.

【解析】

試題分析:本題考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值等基礎(chǔ)知識,考查函數(shù)思想,分類討論思想,考查綜合分析和解決問題的能力.第一問,先求導(dǎo)數(shù),令導(dǎo)數(shù)等于0,得到方程的根,則為增函數(shù),為減函數(shù),本問要注意函數(shù)的定義域;第二問,先利用導(dǎo)數(shù)求出切線的斜率,得到恒成立的表達式,將其轉(zhuǎn)化為恒成立,所以關(guān)鍵就是求,配方法求最大值即可;第三問,先將原方程化為,設(shè),看函數(shù)圖像與x軸的交點,對求導(dǎo),判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,討論最大值的三種情況來決定方程根的情況.

試題解析:(Ⅰ) ,定義域為,

因為,由, 由,

所以的單調(diào)遞增區(qū)間為 單調(diào)遞減區(qū)間為.   .3分

(Ⅱ)由題意,以為切點的切線的斜率滿足

 

所以恒成立.

又當(dāng)時,

所以的最小值為.         .6分

(Ⅲ)由題意,方程化簡得

,則

當(dāng)時, ,

當(dāng)時,

所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

所以處取得極大值即最大值,最大值為

所以當(dāng),即時, 的圖象與軸恰有兩個交點,

方程有兩個實根,

當(dāng)時,的圖象與軸恰有一個交點,

方程有一個實根,

當(dāng)時,的圖象與軸無交點,

方程無實根.                 12分

考點:1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)的最值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax3+bx2+6x+1的遞增區(qū)間為(-2,3),則a,b的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
2x
+1-alnx
,a>0,
(1)討論f(x)的單調(diào)性;
(2)設(shè)a=3,求f(x)在區(qū)間[1,e2]上值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a
1-x2
+
1+x
+
1-x
的最大值為g(a).
(1)設(shè)t=
1+x
+
1-x
,求t的取值范圍;
(2)求g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:函數(shù)f(x)在R上為增函數(shù);
(2)當(dāng)函數(shù)f(x)為奇函數(shù)時,求a的值;
(3)當(dāng)函數(shù)f(x)為奇函數(shù)時,求函數(shù)f(x)在[-1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x(x+1),x≥0
x(1-x),x<0
,則f(0)=
 

查看答案和解析>>

同步練習(xí)冊答案