【題目】證明:存在無數(shù)個(gè)滿足如下條件的整數(shù)組(a,b,c,d):

(1)a>c>0,(a,c)=1;

(2)對任意給定的正整數(shù)k,恰有k個(gè)正整數(shù)n,使得(an+b)|(cn+d)。

【答案】見解析

【解析】

當(dāng)k=1時(shí),,顯然,a>c>0,(a,c)=1.

當(dāng)n≥2時(shí),an+b>(a-1)n+b+1>0.

而當(dāng)n=1時(shí),(an+b)|[(a-1)n+b+1].

故這樣的整數(shù)組(a,b,c,d)有無數(shù)個(gè).

當(dāng)k≥2時(shí),令a=2,b=1,c=1,,其中,p為任一奇素?cái)?shù),滿足條件(1).

,設(shè)

.

易知,.

因?yàn)閚為正整數(shù),所以,.

恰有k個(gè)解恰有k個(gè)解.

滿足條件(2).

又這樣的奇素?cái)?shù)p有無限個(gè),則(a,b,c,d)有無數(shù)組.

綜上,原問題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實(shí)原理是十分簡單的,要學(xué)會盲擰也是很容易的.為了解某市盲擰魔方愛好者的水平狀況,某興趣小組在全市范圍內(nèi)隨機(jī)抽取了名魔方愛好者進(jìn)行調(diào)查,得到的情況如表所示:

用時(shí)(秒)

男性人數(shù)

15

22

14

9

女性人數(shù)

5

11

17

7

附:,.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

1)將用時(shí)低于秒的稱為“熟練盲擰者”,不低于秒的稱為“非熟練盲擰者”.請根據(jù)調(diào)查數(shù)據(jù)完成以下列聯(lián)表,并判斷是否有的把握認(rèn)為是否為“熟練盲擰者”與性別有關(guān)?

熟練盲擰者

非熟練盲擰者

男性

女性

2)以這名盲擰魔方愛好者的用時(shí)不超過秒的頻率,代替全市所有盲擰魔方愛好者的用時(shí)不超過秒的概率,每位盲擰魔方愛好者用時(shí)是否超過秒相互獨(dú)立.那么在該興趣小組在全市范圍內(nèi)再次隨機(jī)抽取名愛好者進(jìn)行測試,其中用時(shí)不超過秒的人數(shù)最有可能(即概率最大)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓是橢圓的左右頂點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn).

1)證明:直線,與直線,斜率之積為定值.

2)設(shè)經(jīng)過且斜率不為0的直線交橢圓于兩點(diǎn),直線與直線交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,E是線段的中點(diǎn),,,.

1)證明:

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷.定價(jià)為1000/.試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷期間每個(gè)零件的進(jìn)價(jià)為650/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;

2)試銷結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550/件;小箱每箱有45件,批發(fā)價(jià)為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;

(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黑板上寫有1,2,…,20142014個(gè)正整數(shù).現(xiàn)進(jìn)行如下操作:第一步劃去最前面的兩個(gè)數(shù)l、2,并在2014后面寫上這兩數(shù)的和3;第二步劃去最前面的三個(gè)數(shù)3、4、5,并在最后面寫上這三數(shù)的和12;如此繼續(xù)下去.當(dāng)?shù)凇瓴綍r(shí),黑板上的數(shù)不夠個(gè),停止操作.求在黑板上出現(xiàn)過的不同數(shù)的個(gè)數(shù)及這些不同數(shù)的和(若一個(gè)數(shù)多次出現(xiàn),只計(jì)算一次).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年寒假是特殊的寒假,因?yàn)榭箵粢咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對線上教育是否滿意與性別有關(guān);

滿意

不滿意

總計(jì)

男生

30

女生

15

合計(jì)

120

2)從被調(diào)查的對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個(gè)數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著食品安全問題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.

(1)在有機(jī)蔬菜的種植過程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對應(yīng)數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產(chǎn)量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且);

前8小時(shí)內(nèi)的銷售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤的期望值為決策依據(jù),當(dāng)購進(jìn)17份比購進(jìn)18份的利潤的期望值大時(shí),求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班共有45人,學(xué)號依次為12、3、、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個(gè)容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個(gè)同學(xué)的學(xué)號應(yīng)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案