【題目】已知函數(shù)是偶函數(shù), (其中).
(1)求函數(shù)的定義域;
(2)求的值;
(3)若函數(shù)與的圖象有且只有一個交點,求的取值范圍.
【答案】(1) (2) (3)
【解析】試題分析:(1)根據(jù)對數(shù)函數(shù)的性質(zhì)有解不等式即可求出函數(shù)的定義域;
(2)函數(shù)是偶函數(shù),所以= ,即有由此可求出k的值;
(3)函數(shù)與的圖象有且只有一個交點,即方程在上只有一解,令則,問題轉(zhuǎn)化為關(guān)于t的方程(a-1)t2-在(, 上只有一解,分三種情況進(jìn)行討論即可求得的取值范圍.
試題解析:
(1)∵,且
∴
∴
所以定義域為
(2)∵是偶函數(shù)
∴對任意恒成立
即恒成立,
∴
(3)∵函數(shù)與的圖象有且只有一個交點
∴方程在上只有一解
即方程在上只有解
令則
因而等價于關(guān)于的方程在上只有一個解
①當(dāng)時,解得,不合題意
②當(dāng)0<a<1時,記h(t)=(a﹣1)t2﹣at﹣1,
其圖象的對稱軸t=<0,
∴函數(shù)h(t)在(0,+∞)上遞減,而h(0)=﹣1,
∴方程在(,+∞)無解;
③當(dāng)a>1時,記h(t)=(a﹣1)t2﹣at﹣1,
其圖象的對稱軸t=>0,h(0)=﹣1,
所以,只需h()<0,即(a﹣1)﹣a﹣1<0,此恒成立,
∴此時a的范圍為a>1,
綜上所述,所求a的取值范圍為a>1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接黨的“十九大”勝利召開與響應(yīng)國家交給的“提速降費”任務(wù),某市移動公司欲提供新的資費套餐(資費包含手機月租費、手機撥打電話費與家庭寬帶上網(wǎng)費)。其中一組套餐變更如下:
原方案資費
手機月租費 | 手機撥打電話 | 家庭寬帶上網(wǎng)費(50M) |
18元/月 | 0.2元/分鐘 | 50元/月 |
新方案資費
手機月租費 | 手機撥打電話 | 家庭寬帶上網(wǎng)費(50M) |
58元/月 | 前100分鐘免費, 超過部分元/分鐘(>0.2) | 免費 |
(1)客戶甲(只有一個手機號和一個家庭寬帶上網(wǎng)號)欲從原方案改成新方案,設(shè)其每月手機通話時間為分鐘(),費用原方案每月資費-新方案每月資費,寫出關(guān)于的函數(shù)關(guān)系式;
(2)經(jīng)過統(tǒng)計,移動公司發(fā)現(xiàn),選這組套餐的客戶平均月通話時間分鐘,為能起到降費作用,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義在上且滿足下列兩個條件:
①對任意都有;
②當(dāng)時,有,
(1)求,并證明函數(shù)在上是奇函數(shù);
(2)驗證函數(shù)是否滿足這些條件;
(3)若,試求函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與直線,其中為常數(shù).
(1)若,求的值;
(2)若點在上,直線過點,且在兩坐標(biāo)軸上的截距之和為0,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:經(jīng)過定點P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示,命題q:直線xtan +y﹣7=0的傾斜角是 ,則下列命題是真命題的為( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C的兩個焦點是F1、F2 , 過F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2017年“雙11”,“雙12”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共100個,生產(chǎn)一個湯碗需5分鐘,生產(chǎn)一個花瓶需7分鐘,生產(chǎn)一個茶杯需4分鐘,已知總生產(chǎn)時間不超過10小時.若生產(chǎn)一個湯碗可獲利潤5元,生產(chǎn)一個花瓶可獲利潤6元,生產(chǎn)一個茶杯可獲利潤3元.
(1)使用每天生產(chǎn)的湯碗個數(shù)x與花瓶個數(shù)y表示每天的利潤ω(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語句q:曲線 + =1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com