【題目】在△ABC中,a,b,c分別是角A,B,C的對邊, = ,且a+c=2.
(1)求角B;
(2)求邊長b的最小值.

【答案】
(1)解:在△ABC中,由已知 ,

即cosCsinB=(2sinA﹣sinC)cosB,

sin(B+C)=2sinAcosB,sinA=2sinAcosB,

△ABC 中,sinA≠0,


(2)解:a+c=2,

由(1) ,因此b2=a2+c2﹣2accosB=a2+c2﹣ac

由已知b2=(a+c)2﹣3ac=4﹣3ac

故b 的最小值為1.


【解析】(1)利用正弦定理化簡表達式,求角B;個兩角和與差的三角函數(shù)化簡求解即可.(2)利用余弦定理求邊長b的最小值.推出b的表達式,利用基本不等式求解即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中,a1=1且a1 , a3 , a9成等比數(shù)列, (Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設bn=n2 求數(shù)列[bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F(xiàn)為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為P0(0<P0<1),中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品. (Ⅰ)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計得分為X,若X≤3的概率為 ,求P0;
(Ⅱ)若張三、李四兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率.

(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動,應從第3,4,5組各抽取多少名志愿者?

(3)在(2)的條件下,我市決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,則下列結(jié)論錯誤的是(
A.
B.函數(shù)f(x)在 上單調(diào)遞增
C.函數(shù)f(x)的一條對稱軸是
D.為了得到函數(shù)f(x)的圖象,只需將函數(shù)y=2cosx的圖象向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在兩個正實數(shù)x、y,使得等式x+a(y﹣2ex)(lny﹣lnx)=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝著標有數(shù)字1、2、3、4、5的小球各2個,從袋中任取3個小球,每個小球被取出的可能性都相等,用ξ表示取出的3個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機變量ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設成立; 成立. 如果“”為真,“”為假,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案