已知是等差數(shù)列,前n項(xiàng)和是,且,,
(1)求數(shù)列的通項(xiàng)公式;
(2)令=·2n,求數(shù)列的前n項(xiàng)和
(1) ,(2)

試題分析:(1)等差數(shù)列的求解方法為待定系數(shù)法,利用已知兩個(gè)條件,列出關(guān)于首項(xiàng)及公差的方程組,解出,從而可得數(shù)列的通項(xiàng)公式;(2)數(shù)列求和,要先分析通項(xiàng)特征,本題是等差乘等比型,因此應(yīng)用錯(cuò)位相減法求和. 設(shè),則,錯(cuò)位相減得,再利用等比數(shù)列求和公式化簡(jiǎn)得
試題解析:
解:(1)        
解得                                               4分
(2)
    ①
  ②                6分
① ②                  8分
所以:            12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等差數(shù)列中,,其前n項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為q,且,.
(1)求;
(2)設(shè)數(shù)列滿足,求的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}滿足anan+1an+2·an+3=24,且a1=1,a2=2,a3=3,則a1+a2+a3+…+a2 013=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an},如果數(shù)列{bn}滿足b1=a1,bn=an+an-1,n≥2,n∈N*,則稱數(shù)列{bn}是數(shù)列{an}的“生成數(shù)列”.
(1)若數(shù)列{an}的通項(xiàng)為an=n,寫出數(shù)列{an}的“生成數(shù)列”{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}的通項(xiàng)為cn=2n+b(其中b是常數(shù)),試問數(shù)列{cn}的“生成數(shù)列”{qn}是否是等差數(shù)列,請(qǐng)說明理由;
(3)已知數(shù)列{dn}的通項(xiàng)為dn=2n+n,求數(shù)列{dn}的“生成數(shù)列”{pn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在等比數(shù)列{an}中,有a3a11=4a7,數(shù)列{bn}是等差數(shù)列,且a7b7,則b5b9=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}的通項(xiàng)公式是an=-n2+12n-32,其前n項(xiàng)和是Sn,對(duì)任意的m,n∈N*m<n,則SnSm的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若(a2-1)3+2 012·(a2-1)=1,(a2 011-1)3+2 012(a2 011-1)=-1,則下列四個(gè)命題中真命題的序號(hào)為________.
①S2 011=2 011;②S2 012=2 012;③a2 011<a2;④S2 011<S2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則m等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則m等于(  ).
A.3B.4 C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案