試題分析:因為
平面
所以
與平面
所成角為
求線面角關鍵找垂線,找出垂線就能在直角三角形中研究線面角大小.另外需熟悉正方體中面對角線與體對角線量的關系.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在矩形
中,點
為邊
上的點,點
為邊
的中點,
,現(xiàn)將
沿
邊折至
位置,且平面
平面
.
(1) 求證:平面
平面
;
(2) 求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°。
(1)求證:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在幾何體
中,
,
,
,且
,
.
(I)求證:
;
(II)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設m,n是兩條不同的直線,α,β是兩個不同的平面,下列為真命題的是( )
A.若m⊥α,n⊥β,m⊥n,則α⊥β |
B.若α⊥β,α∩β=m,m⊥n,則n⊥β |
C.若α⊥β,m⊥α,n∥β,則m⊥n |
D.若α∥β,m⊥α,n∥β,則m⊥n |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖所示,在四邊形
A-BCD中,
AD∥
BC,
AD=
AB,∠
BCD=45°,∠
BAD=90°,將△
ABD沿
BD折起,使平面
ABD⊥平面
BCD,構成三棱錐
A
BCD,則在三棱錐
ABCD中,下列命題正確的是( ).
A.平面ABD⊥平面ABC |
B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC |
D.平面ADC⊥平面ABC |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
將邊長為2,銳角為的菱形沿較短對角線折成二面角,點分別為的中點,給出下列四個命題:
①;②與異面直線、都垂直;③當二面角是直二面角時,
=;④垂直于截面.
其中正確的是
(將正確命題的序號全填上).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知一個平面與正方體的12條棱的夾角均為
,那么
為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知命題“直線
與平面
有公共點”是真命題,那么下列命題:
①直線
上的點都在平面
內(nèi);
②直線
上有些點不在平面
內(nèi);
③平面
內(nèi)任意一條直線都不與直線
平行.其中真命題的個數(shù)是( )
查看答案和解析>>