【題目】【廣東省惠州市2017屆高三上學期第二次調研】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點.
(Ⅰ)求點的軌跡方程;
(Ⅱ)若直線與點的軌跡有兩個不同的交點和,且原點總在以為直徑的圓的內部,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】學校藝術節(jié)對同一類的, , , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:
甲說:“或作品獲得一等獎”
乙說:“作品獲得一等獎”
丙說:“, 兩項作品未獲得一等獎”
丁說:“作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率.
(1)求橢圓的方程;
(2)點在橢圓上,若點與點關于原點對稱,連接并延長與橢圓的另一個交點為,連接,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=2sin(﹣2x+ )的圖象向左平移 個單位后,得到的圖象對應的解析式應該是( )
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+ )
C.y=﹣2sin(2x﹣ )
D.y=﹣2sin(2x+ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)擬建立一個藝術博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現從建筑設計院聘請專家設計了一個招標方案:兩家公司從個招標問題中隨機抽取個問題,已知這個招標問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩家公司共答對道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正四棱錐P﹣ABCD,B1為PB的中點,D1為PD的中點,則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比是( )
A.1:4
B.3:8
C.1:2
D.2:3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,O為AC與BD的交點,AB平面PAD,△PAD是正三角形,DC//AB,DA=DC=2AB.
(1)若點E為棱PA上一點,且OE∥平面PBC,求的值;
(2)求證:平面PBC平面PDC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com