一條直線與兩條平行直線相交,證明這三條直線同在一個平面內.

  已知:如圖所示,abac=A,bc=B,求證:a,b,c共面.

答案:
解析:

∵ ab,∴ a,b可確定平面a

  又∵ ac=Abc=B

  ∴ 點A,Ba ca

  故a,b,c共面.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①經過空間一點一定可作一條直線與兩異面直線都垂直;
②經過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個命題:

①四面體的四個面至多只能有三個直角三角形;

②一條直線與一個直二面角的兩個面所成角分別為α、β,則α+β>90°;

③在平行四邊形ABCD外有一點P,且PA=PB=PC=PD,則ABCD一定是菱形.

④過正方體ABCD—A1B1C1D1的棱AB、BC的中點E、F,作一個與底面ABCD成45°角的截面,則此截面的形狀為三角形或六邊形.

其中錯誤命題的序號是__________________.(寫出所有符合條件的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高三第四次月考理科數(shù)學試卷(解析版) 題型:填空題

給出下列命題:

①經過空間一點一定可作一條直線與兩異面直線都垂直;②經過空間一點一定可作一平面與兩異面直線都平行;③已知平面、,直線,若,,則;④四個側面兩兩全等的四棱柱為直四棱柱;⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐.其中正確命題的序號是      

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省南昌二中高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①經過空間一點一定可作一條直線與兩異面直線都垂直;
②經過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省南昌二中高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①經過空間一點一定可作一條直線與兩異面直線都垂直;
②經過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案