如圖,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=數(shù)學(xué)公式,BC=26.
求:(1)cos∠DAC的值;
(2)線段AD的長.

解:(1)由cosB=和BC=26,可求得,AB=10------(2分)
可證得:∠ACB=∠ACD=∠DAC,由勾股定理可求得AC=24,
∴cos∠DAC=cos∠ACB==.------(3分)
(2)取AC中點(diǎn)E,連接DE,AE=12,cos∠DAC=
由等腰△ADC三線合一得DE⊥AC,
∴Rt△AED中AD==13------(3分)
分析:(1)在RT△BAC中求出AB,AC,利用∠ACB=∠ACD=∠DAC,求出cos∠DAC.
(2)取AC中點(diǎn)E,連接DE,在Rt△AED中AD=求解即可.
點(diǎn)評:本題考查平面多邊形中的線段長度求解,解直角三角形的知識,考查轉(zhuǎn)化、計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:BC⊥平面ACFE;
(2)當(dāng)EM為何值時,AM∥平面BDF?證明你的結(jié)論;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點(diǎn)M在線段EF上運(yùn)動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,對角線AC和BD交于點(diǎn)O,E、F分別是AC和BD的中點(diǎn),分別寫出
(1)圖中與
EF
、
CO
共線的向量;
(2)與
EA
相等的向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
(I)求證:BC⊥平面ACFE;
(II)若M為線段EF的中點(diǎn),設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

查看答案和解析>>

同步練習(xí)冊答案