(理)湖中有四個(gè)小島,它們的位置恰好近似構(gòu)成四邊形的四個(gè)頂點(diǎn),若要搭3座橋?qū)⑺鼈冞B接起來(lái),則不同的建橋方案有
 
種.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:由建橋的方式可以分為兩類:從一個(gè)島出發(fā)向其他三島各建一橋,一個(gè)島最多建兩座橋,利用排列的計(jì)算公式即可得出.
解答: 解:分為以下兩類:設(shè)四個(gè)小島為,A,B,C,D
第一類,從一個(gè)島出發(fā)向其他三島各建一橋,共有4種方法;
第二類,一個(gè)島最多建兩座橋,但是象下面這樣的兩個(gè)排列對(duì)應(yīng)一種建橋方法,A-B-C-D,D-C-B-A,要去掉重復(fù)的這樣,因此共有
1
2
•4!
=12種方法.
根據(jù)分類計(jì)數(shù)原理,知道共有4+12=16種.
故答案為16.
點(diǎn)評(píng):熟練掌握分類加法原理和分步乘法原理及排列的計(jì)算公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=1,a2+a4=6.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下的三項(xiàng)構(gòu)成公比大于1的等比數(shù)列{bn}的前三項(xiàng),記數(shù)列{bn}前n項(xiàng)的和為Sn,若對(duì)任意n∈N*,使得Sn≥λ成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

歐陽(yáng)修《賣油翁》中寫(xiě)到:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)孔入,而錢(qián)不濕.可見(jiàn)“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢(qián)是直徑為4cm的圓,中間有邊長(zhǎng)為1cm的正方形孔,若隨機(jī)向銅錢(qián)上滴一滴油(油滴是直徑為0.2cm的球)正好落人孔中的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x||2x-3|≤7},B={x|m+1≤x≤2m-1},若 A∪B=A,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.若函數(shù)h(x)=lnx(x∈[M,+∞))是保三角形函數(shù),求M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=x2+ax+b在點(diǎn)(0,b)處的切線方程是x-y+1=0,則a-b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某班進(jìn)行的演講比賽中,共有5位選手參加,其中3位女生,2位男生.如果2位男生不能連著出場(chǎng),且女生甲不能排在第一個(gè),那么出場(chǎng)順序的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某校高中學(xué)生的近視眼發(fā)病率,在該校學(xué)生中進(jìn)行分層抽樣調(diào)查,已知該校高一、高二、高三分別有學(xué)生800名、600名、500名.若高三學(xué)生共抽取25名,則高一學(xué)生共抽取
 
名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|x-2>0},B={x|x2-1≤0},則(∁UA)∪B=( 。
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案