cos15°的值是( 。
A、
6
-
2
4
B、
2
-
6
4
C、
6
+
2
4
D、
3
+
2
4
考點(diǎn):兩角和與差的余弦函數(shù),三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:cos15°=cos(45°-30°),利用兩角差的余弦可求得答案.
解答: 解:∵cos15°=cos(45°-30°)
=cos45°cos30°+sin45°sin30°
=
2
2
×
3
2
+
2
2
×
1
2

=
6
+
2
4

故選:C.
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn)求值,著重考查兩角差的余弦,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
3
3
,且π<α<
2
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=cos2x的圖象向左平移
π
5
個(gè)單位,所得圖象對(duì)應(yīng)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2lnx的增區(qū)間為(  )
A、(1,+∞)
B、(0,1)
C、(
2
,+∞)
D、(0,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形ABC中,A、B、C的對(duì)應(yīng)邊分別是a、b、c,若acosC=ccosA,且a、b、c成等比,則三角形ABC是( 。
A、等邊三角形
B、直角三角形
C、等腰直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式x2-ax+a>0(a∈R)在R上恒成立的充分不必要條件是( 。
A、a<0或a>4
B、0<a<2
C、0<a<4
D、0<a<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1的參數(shù)方程
x=2cosφ
y=3sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系曲線,C2的極坐標(biāo)方程為ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
π
3
).設(shè)P為C1上任意一點(diǎn),則|PA|2+|PB|2+|PC|2+|PD|2的取值范圍是( 。
A、[12,52]
B、[32,52]
C、[12,32]
D、[20,32]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=1,|
b
|=2,
a
b
的夾角為60°,則|
a
-
b
|=(  )
A、
3
B、-
3
C、1
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M為AC1的中點(diǎn),N為BB1的中點(diǎn),則|MN|為( 。
A、
a
2
B、
2
2
a
C、
2
a
D、2a

查看答案和解析>>

同步練習(xí)冊(cè)答案