【題目】(Ⅰ)求證:當a>2時, + <2 ; (Ⅱ)證明:2, ,5不可能是同一個等差數列中的三項.
【答案】解:(Ⅰ)∵( + )2=2a+2 , >0, >0且a+2≠a﹣2, ∴ ,
∴ + <2
(Ⅱ)假設 是同一個等差數列中的三項,分別設為am , an , ap ,
則 為無理數,又 為有理數,矛盾.
所以,假設不成立,即 不可能是同一個等差數列中的三項.
【解析】(Ⅰ)利用綜合法證明即可;(Ⅱ)利用反證法證明,假設 是同一個等差數列中的三項,分別設為am , an , ap , 推出 為無理數,又 為有理數,矛盾,即可證明不可能是等差數列中的三項.
【考點精析】掌握反證法與放縮法是解答本題的根本,需要知道常見不等式的放縮方法:①舍去或加上一些項②將分子或分母放大(縮小).
科目:高中數學 來源: 題型:
【題目】2014年7月16日,中國互聯網絡信息中心發(fā)布《第三十四次中國互聯網發(fā)展狀況報告》,報告顯示:我國網絡購物用戶已達億.為了了解網購者一次性購物金額情況,某統(tǒng)計部門隨機抽查了6月1日這一天100名網購者的網購情況,得到如下數據統(tǒng)計表.已知網購金額在2000元以上(不含2000元)的頻率為.
(Ⅰ)確定, , , 的值;
(Ⅱ)為進一步了解網購金額的多少是否與網齡有關,對這100名網購者調查顯示:購物金額在2000元以上的網購者中網齡3年以上的有35人,購物金額在2000元以下(含2000元)的網購者中網齡不足3年的有20人.
①請將列聯表補充完整;
網齡3年以上 | 網齡不足3年 | 合計 | |
購物金額在2000元以上 | 35 | ||
購物金額在2000元以下 | 20 | ||
合計 | 100 |
②并據此列聯表判斷,是否有%的把握認為網購金額超過2000元與網齡在三年以上有關?
參考數據:
(參考公式: ,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一顆質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現的點數為x,第二次出現的點數為y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上, 函數的圖象恒在直線下方, 求的取值范圍;
(3)設.當時, 若對于任意,存在,使,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人投籃命中的概率為別為 與 ,各自相互獨立,現兩人做投籃游戲,共比賽3局,每局每人各投一球.
(1)求比賽結束后甲的進球數比乙的進球數多1個的概率;
(2)設ξ表示比賽結束后,甲、乙兩人進球數的差的絕對值,求ξ的概率分布和數學期望E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓(),原點到直線的距離為,其中:點,點.
(1)求該橢圓的離心率;
(2)經過橢圓右焦點的直線和該橢圓交于兩點,點在橢圓上, 為原點,若,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某倉庫為了保持庫內的濕度和溫度,四周墻上均裝有如圖所示的自動通風設施.該設施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個半圓,固定點E為CD的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設施邊框上下滑動且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當MN和AB之間的距離為1米時,求此時三角通風窗EMN的通風面積;
(2)設MN與AB之間的距離為x米,試將三角通風窗EMN的通風面積S(平方米)表示成關于x的函數S=f(x);
(3)當MN與AB之間的距離為多少米時,三角通風窗EMN的通風面積最大?并求出這個最大面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com