(2013•牡丹江一模)設(shè)函數(shù)f(x)=(x-2)n,其中n=6
π
2
0
cosxdx,則f(x)展開式中x4的系數(shù)為
60
60
分析:利用定積分基本定理可求得n,再利用二項(xiàng)式定理可求得f(x)展開式中x4的系數(shù).
解答:解:∵n=6
π
2
0
cosxdx=6sinx
|
π
2
0
=6,
∴f(x)=(x-2)6展開式中x4的系數(shù)為:
C
4
6
•(-2)2=15×4=60.
故答案為:60.
點(diǎn)評(píng):本題考查二項(xiàng)式定理,考查定積分,求得n是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)在球O內(nèi)任取一點(diǎn)P,使得P點(diǎn)在球O的內(nèi)接正方體中的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)復(fù)數(shù) (1+i)z=i( i為虛數(shù)單位),則
.
z
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=
1+1nx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)知果當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證:[(n+1)!]2>(n+1)en-2+
2
n+1
,這里n∈N*,(n+1)!=1×2×3×…×(n+1),e為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-a(x-1),其中a∈R,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的四個(gè)側(cè)面中面積最大的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案