【題目】設(shè),函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點,試求a的值.
【答案】(1)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;(2).
【解析】
(1)將代入中可得(),令,解得,進而求得單調(diào)區(qū)間;
(2)令,解得(舍),,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,則,由于函數(shù)在區(qū)間上有唯一零點,則,整理即為,設(shè),可得在是單調(diào)遞增的,則,進而求得
(1)函數(shù),
當(dāng)時,(),
∴,
令,即,
解得或(舍),
∴時,;時,,
∴的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是
(2),
則,
令,得,
∵,
∴,
∴方程的解為(舍),;
∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
∴,
若函數(shù)在區(qū)間上有唯一零點,
則,
而滿足,
∴,
即,
設(shè),
∵在是單調(diào)遞增的,
∴至多只有一個零點,
而,
∴用代入,
得,
解得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)指出函數(shù)的基本性質(zhì):定義域,奇偶性,單調(diào)性,值域(結(jié)論不需證明),并作出函數(shù)的圖象;
(2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程恰有個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cos ωx·sin+a(ω>0)圖象上最高點的縱坐標(biāo)為2,且圖象上相鄰兩個最高點的距離為π.
(1)求a和ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲水機廠生產(chǎn)的A,B,C,D四類產(chǎn)品,每類產(chǎn)品均有經(jīng)濟型和豪華型兩種型號,某一月的產(chǎn)量如下表(單位:臺)
A | B | C | D | |
經(jīng)濟型 | 5000 | 2000 | 4500 | 3500 |
豪華型 | 2000 | 3000 | 1500 | 500 |
(1)在這一月生產(chǎn)的飲水機中,用分層抽樣的方法抽取n臺,其中有A類產(chǎn)品49臺,求n的值;
(2)用隨機抽樣的方法,從C類經(jīng)濟型飲水機中抽取10臺進行質(zhì)量檢測,經(jīng)檢測它們的得分如下:7.9,9.4,7.8,9.4,8.6,9.2,10,9.4,7.9,9.4,從D類經(jīng)濟型飲水機中抽取10臺進行質(zhì)量檢測,經(jīng)檢測它們的得分如下:8.9,9.3,8.8,9.2,8.6,9.2,9.0,9.0,8.4,8.6,根據(jù)分析,你會選擇購買C類經(jīng)濟型飲水機與D類經(jīng)濟型飲水機中哪類產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為普及學(xué)生安全逃生知識與安全防護能力,某學(xué)校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
合計 |
(1)求表中,,,,的值;
(2)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,且為常數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若在區(qū)間內(nèi),存在且時,使不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,求的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時, .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點為極點,軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)當(dāng)時,寫出直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)已知點,設(shè)直線l與曲線C交于A,B兩點,試確定的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com