【題目】已知函數(shù),若曲線在點(diǎn)處的切線斜率為3,且時(shí), 有極值。
(1)求函數(shù)的解析式;
(2)求函數(shù)在上的最值。
【答案】(1);(2)最大值13,最小值
【解析】試題分析:(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)在點(diǎn)處的切線斜率為3,得到,利用條件當(dāng)時(shí), 有極值,得到,聯(lián)立方程可求, ;(2)利用函數(shù)的導(dǎo)數(shù)和最大值之間的關(guān)系,求函數(shù)的最大值和最小值即可.
試題解析:(1)∵,∴,∵在點(diǎn)處的切線斜率為3,∴,即,∴,①∵時(shí), 有極值.∴,即,∴②
由①②解得, .∴.
(2)∵,∴由,解得或,
當(dāng)在上變化時(shí), 和的變化如下:
|
|
| 1 | ||||
+ | 0 | + | |||||
| 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 4 |
∴由表格可知當(dāng)時(shí),函數(shù)取得最小值,在時(shí),函數(shù)取得極大值同時(shí)也是最大值,故函數(shù)在上的最大值為13和最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=( )2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1﹣ )f﹣1(x)>a(a﹣ )對(duì)區(qū)間x∈[ , ]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象在處的切線過(guò)點(diǎn), .
(1)若,求函數(shù)的極值點(diǎn);
(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +log2017(2﹣x)的定義域?yàn)椋?/span> )
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=4.
(1)直線l1: 與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1 , y1)、P(x2 , y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1 , 點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2 , 如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)mn是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線, ,則下列說(shuō)法正確的是( )
A. 把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
B. 把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線
D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=x2-x-15,且|x-a|<1,
(1)解不等式;
(2)求證:|f(x)-f(a)|<2(|a|+1).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com