【題目】已知圓經(jīng)過(guò)點(diǎn),,且它的圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)求圓關(guān)于直線對(duì)稱的圓的方程。
(Ⅲ)若點(diǎn)為圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)
【解析】
試題分析:(Ⅰ)首先設(shè)出方程,將點(diǎn)坐標(biāo)代入得到關(guān)于參數(shù)的方程組,通過(guò)解方程組得到參數(shù)值,從而確定其方程;(Ⅱ)求出N(2,4)關(guān)于x-y+3=0的對(duì)稱點(diǎn)為(1,5),即可得到圓N關(guān)于直線x-y+3=0對(duì)稱的圓的方程;(Ⅲ)首先設(shè)出點(diǎn)M的坐標(biāo),利用中點(diǎn)得到點(diǎn)D坐標(biāo),代入圓的方程整理化簡(jiǎn)得到的中點(diǎn)M的軌跡方程
試題解析::(Ⅰ)由已知可設(shè)圓心N(a,3a-2),又由已知得|NA|=|NB|,
從而有,解得:a=2.
于是圓N的圓心N(2,4),半徑.
所以,圓N的方程為.(5分)
(Ⅱ)N(2,4)關(guān)于x-y+3=0的對(duì)稱點(diǎn)為(1,5),
所以圓N關(guān)于直線x-y+3=0對(duì)稱的圓的方程為(9分)
(Ⅲ)設(shè)M(x,y),D,則由C(3,0)及M為線段CD的中點(diǎn)得:,解得又點(diǎn)D在圓N:上,所以有,
化簡(jiǎn)得:.
故所求的軌跡方程為.(13分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的一段圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向右平移個(gè)單位,得到的圖象,求直線與
函數(shù)的圖象在內(nèi)所有交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:與圓O:相交于A,B兩個(gè)不同的點(diǎn),且A,B.
(1)當(dāng)面積最大時(shí),求m的取值,并求出的長(zhǎng)度.
(2)判斷是否為定值;若是,求出定值的大小;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點(diǎn),若點(diǎn)的橫坐標(biāo)是,點(diǎn)的縱坐標(biāo)是.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖像向左平移個(gè)單位后,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求的最大值及取得最大值時(shí)的的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為(為參數(shù)).
(1)直線過(guò)且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有8名奧運(yùn)會(huì)志愿者,其中志愿者通曉日語(yǔ),通曉俄語(yǔ),通曉韓語(yǔ).從中選出通曉日語(yǔ)、俄語(yǔ)和韓語(yǔ)的志愿者各名,組成一個(gè)小組.
(1)求被選中的概率;
(2)求和不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,, 且.
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)令, 數(shù)列的前項(xiàng)和為, 試比較與的大小;
(3)令, 數(shù)列的前項(xiàng)和為, 求證: 對(duì)任意, 都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com