【題目】下列說法正確的有( )
①在回歸分析中,可以借助散點(diǎn)圖判斷兩個變量是否呈線性相關(guān)關(guān)系.
②在回歸分析中,可以通過殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.
③在回歸分析模型中,相關(guān)系數(shù)的絕對值越大,說明模型的擬合效果越好.
④在回歸直線方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量增加0.1個單位.
A.1個B.2個C.3個D.4個
【答案】C
【解析】
根據(jù)散點(diǎn)圖的應(yīng)用、利用“殘差”的意義、相關(guān)系數(shù)的作用、回歸方程的意義,即可得出正確的判斷.
對于①,可以借助散點(diǎn)圖直觀判斷兩個變量是否呈線性相關(guān)關(guān)系,
所以正確;
對于②,可用殘差的平方和判斷模型的擬合效果,殘差平方和越小,
模型的擬合效果越好,所以正確;
對于③,相關(guān)系數(shù)的絕對值越大,只能說明兩個變量具有較強(qiáng)的相關(guān)性,
不能作為分析模型的擬合效果好壞的依據(jù),應(yīng)該是相關(guān)指數(shù)越大,
模型的擬合效果越好,所以錯誤;
對于④,在回歸直線方程中,當(dāng)解釋變量每增加1個單位時,
預(yù)報變量增加0.1個單位,所以正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)為圓心的圓過原點(diǎn).
(1)設(shè)直線與圓交于點(diǎn),若,求圓的方程;
(2)在(1)的條件下,設(shè),且分別是直線和圓上的動點(diǎn),求的最大值及此時點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是兩個不重合的平面,下列選項(xiàng)中,一定能得出平面與平面平行的是( )
A.平面內(nèi)有一條直線與平面平行
B.平面內(nèi)有兩條直線與平面平行
C.平面內(nèi)有一條直線與平面內(nèi)的一條直線平行
D.平面與平面不相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PA垂直于⊙O所在的平面,M為圓周上任意一點(diǎn),AN⊥PM,N為垂足.
(1)求證:AN⊥平面PBM;
(2)若AQ⊥PB,垂足為Q,求證:NQ⊥PB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,F(xiàn)C=4,AE=5,求此幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線C上的動點(diǎn),求P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,若(,,p為常數(shù)),則稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷,其中正確的為( )
A.若是等方差數(shù)列,則是等差數(shù)列
B.若是等方差數(shù)列,則是等方差數(shù)列
C.是等方差數(shù)列
D.若是等方差數(shù)列,則(,k為常數(shù))也是等方差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: ,對于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com