【題目】設(shè)f(x)是二次函數(shù),其圖象過(guò)點(diǎn)(0,1),且在點(diǎn)(-2,f(-2))處的切線方程為2x+y+3=0
(1)求f(x)的表達(dá)式;
(2)求f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(3)若直線x=-t(0<t<1)把f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過(guò)點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 . (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點(diǎn),求證:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)Pn(an , bn)滿足an+1=an·bn+1 , bn+1=(n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).
(1)求過(guò)點(diǎn)P1 , P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N* , 點(diǎn)Pn都在(1)中的直線l上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x . (Ⅰ)試寫出這個(gè)函數(shù)的性質(zhì)(不少于3條,不必說(shuō)明理由),并作出圖象;
(Ⅱ)設(shè)函數(shù)g(x)=4x+4﹣x﹣af(x),求這個(gè)函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義在[﹣4,4]上的偶函數(shù),且f(x)= ,則不等式(1﹣2x)g(log2x)<0的解集用區(qū)間表示為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) ,其中 n 為正整數(shù).
(1)求f(1),f(2),f(3) 的值;
(2)猜想滿足不等式 f(n)<0 的正整數(shù) n 的范圍,并用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果命題 p(n) 對(duì) n=k 成立,那么它對(duì) n=k+2 也成立,又若 p(n) 對(duì) n=2 成立,則下列結(jié)論正確的是( )
A.p(n) 對(duì)所有自然數(shù) n 成立
B.p(n) 對(duì)所有正偶數(shù) n 成立
C.p(n) 對(duì)所有正奇數(shù) n 成立
D.p(n) 對(duì)所有大于1的自然數(shù) n 成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根據(jù)以下條件分別求實(shí)數(shù)m的值或范圍.
(1)z是純虛數(shù);
(2)z對(duì)應(yīng)的點(diǎn)在復(fù)平面的第二象限.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com