【題目】已知集合A={x|x2﹣x﹣2>0},B={x|1<x≤3},則(RA)∩B=( ) A.
A.(1,2]
B.[﹣1,2]
C.(1,3]
D.(﹣∞,﹣1)∪(2,+∞)
【答案】A
【解析】解:集合A={x|x2﹣x﹣2>0}={x|x<﹣1或x>2}=(﹣∞,﹣1)∪(2,+∞),
∴RA=[﹣1,2];
又B={x|1<x≤3}=(1,3],
∴(RA)∩B=(1,2].
故選:A.
【考點精析】根據(jù)題目的已知條件,利用交、并、補集的混合運算的相關知識可以得到問題的答案,需要掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,E,F分別是線段C1D,BC的中點,則直線A1B與直線EF的位置關系是( )
A. 相交 B. 異面
C. 平行 D. 垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段,表中為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a﹣1 | b | 65 |
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( 。
A.2號學生進入30秒跳繩決賽
B.5號學生進入30秒跳繩決賽
C.8號學生進入30秒跳繩決賽
D.9號學生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Rt△ABC中,斜邊BC=4,以BC的中點O為圓心,作半徑為r(r<2)的圓,圓O交BC于P,Q兩點,則|AP|2+|AQ|2=( )
A.8+r2
B.8+2r2
C.16+r2
D.16+2r2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={1,2,3,4},B={x|x=2n,n∈A},則A∩B=( )
A.{1,4}
B.{1,3}
C.{2,4}
D.{2,3}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)a,b滿足2a=3,3b=2,則函數(shù)f(x)=ax+x﹣b的零點所在的區(qū)間是( )
A.(﹣2,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若a、b、c、d是直線,α、β是平面,且a、bα,c、dβ,且a∥c,b∥d,則平面α與平面β ( )
A. 平行 B. 相交 C. 異面 D. 不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的結論有 ( )
①如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等;
②如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等;
③如果一個角的兩邊和另一個角的兩邊分別垂直,那么這兩個角相等或互補;
④如果兩條直線同時平行于第三條直線,那么這兩條直線互相平行.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com