【題目】曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出的直角坐標(biāo)方程,并且用 (為直線的傾斜角, 為參數(shù))的形式寫出直線的一個參數(shù)方程;
(2) 與是否相交,若相交求出兩交點(diǎn)的距離,若不相交,請說明理由.
【答案】(1)的直角坐標(biāo)方程為,直線的一個參數(shù)方程為 (為參數(shù));(2)相交,且兩交點(diǎn)的距離為.
【解析】試題分析:
(1)由題意可得的直角坐標(biāo)方程為,直線的一個參數(shù)方程為 (為參數(shù));
(2)聯(lián)立直線與橢圓的方程,很明顯直線與橢圓有兩個交點(diǎn),且兩交點(diǎn)的距離是.
試題解析:
(1) 的直角坐標(biāo)方程為,
由得,直線的傾斜角為,
過點(diǎn),故直線的一個參數(shù)方程為 (為參數(shù))
(2)將的參數(shù)方程代入的直角坐標(biāo)方程得
, , ,
顯然與有兩個交點(diǎn)且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),| |=| |=| |=1, ,A(1,1),則 的取值范圍( )
A.[﹣1﹣ , ﹣1]
B.[﹣ ﹣ ,﹣ + ]?
C.[ ﹣ , + ]
D.[1﹣ ,1+ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠的打印機(jī)每5年需淘汰一批舊打印機(jī)并購買新機(jī),買新機(jī)時,同時購買墨盒,每臺新機(jī)隨機(jī)購買第一盒墨150元,優(yōu)惠0元;再每多買一盒墨都要在原優(yōu)惠基礎(chǔ)上多優(yōu)惠一元,即第一盒墨沒有優(yōu)惠,第二盒墨優(yōu)惠一元,第三盒墨優(yōu)惠2元,……,依此類推,每臺新機(jī)最多可隨新機(jī)購買25盒墨.平時購買墨盒按零售每盒200元.
公司根據(jù)以往的記錄,十臺打印機(jī)正常工作五年消耗墨盒數(shù)如下表:
消耗墨盒數(shù) | 22 | 23 | 24 | 25 |
打印機(jī)臺數(shù) | 1 | 4 | 4 | 1 |
以這十臺打印機(jī)消耗墨盒數(shù)的頻率代替一臺打印機(jī)消耗墨盒數(shù)發(fā)生的概率,記ξ表示兩臺打印機(jī)5年消耗的墨盒數(shù).
(1)求ξ的分布列;
(2)若在購買兩臺新機(jī)時,每臺機(jī)隨機(jī)購買23盒墨,求這兩臺打印機(jī)正常使用五年在消耗墨盒上所需費(fèi)用的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時,函數(shù)的解析式為f(x)= ﹣ (a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[﹣1,0]上的最大值.
(3)對任意的x1 , x2∈[﹣1,1]都有|f(x1)﹣f(x2)|≤M成立,求最小的整數(shù)M的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列所給4個圖象中,與所給3件事吻合最好的順序?yàn)椋?)
(1)小明離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)小明騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;
(3)小明出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時間開始加速.
A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減,遞增,則不等式xf(x)<0的解集為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=4x和點(diǎn)P(6,4),點(diǎn)A為第一象限內(nèi)的點(diǎn)且在直線l上,直線PA交x軸正半軸于點(diǎn)B,
(1)當(dāng)OP⊥AB時,求AB所在直線的直線方程;
(2)求△OAB面積的最小值,并求當(dāng)△OAB面積取最小值時的B的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣alnx+ (a∈R) (Ⅰ)求函數(shù)f(x)單調(diào)區(qū)間;
(Ⅱ)若a=﹣1,求證:當(dāng)x>1時,f(x)< x3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.若,請你根據(jù)這一發(fā)現(xiàn)判斷函數(shù)的對稱中心為( )
A. (,1) B. (-,1) C. (,-1) D. (-,-1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com