數(shù)列{}的前n項(xiàng)和Sn為_(kāi)_______.

答案:
解析:

  答案:3-

  思路分析:注意通項(xiàng)公式an的形式,尋求特殊的求和方法.本題的求和方法叫做錯(cuò)位相減法,對(duì)于形如{anbn}的數(shù)列,其中{an}為等差數(shù)列,{bn}為等比數(shù)列,均可采用錯(cuò)位相減法求和(Sn-qSn,其中q為{bn}的公比).

  ∵+…+,

  ∴+…+

  ∴兩式相減,得

  =1++…+

 。1+

 。(3-).

  ∴Sn=3-


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足遞推關(guān)系式an=2an-1+1,(n≥2)其中a4=15
(1)求a1,a2,a3
(2)求數(shù)列{an}的通項(xiàng)公式
(3)求數(shù)列{an}的前n項(xiàng)和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[已知數(shù)列{an}滿足:a1=-
1
2
,a2=1,數(shù)列{
1
an
}
為等差數(shù)列;數(shù)列{bn}中,Sn為其前n項(xiàng)和,且b1=
3
4
,4nSn+3n+1=3•4n
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)記An=anan+1,求數(shù)列{An}的前n項(xiàng)和S;
(3)設(shè)數(shù)列{cn}滿足cn=
bn
an
,Tn為數(shù)列{cn}的前n項(xiàng)和,求xn=Tn+1-2Tn+Tn-1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足遞推關(guān)系式an=2an-1+1,(n≥2)其中a4=15
(1)求a1,a2,a3
(2)求數(shù)列{an}的通項(xiàng)公式
(3)求數(shù)列{an}的前n項(xiàng)和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市楊家坪中學(xué)高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知數(shù)列{an}滿足遞推關(guān)系式an=2an-1+1,(n≥2)其中a4=15
(1)求a1,a2,a3
(2)求數(shù)列{an}的通項(xiàng)公式
(3)求數(shù)列{an}的前n項(xiàng)和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省杭州高級(jí)中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

[已知數(shù)列{an}滿足:,a2=1,數(shù)列為等差數(shù)列;數(shù)列{bn}中,Sn為其前n項(xiàng)和,且
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)記An=anan+1,求數(shù)列{An}的前n項(xiàng)和S;
(3)設(shè)數(shù)列{cn}滿足,Tn為數(shù)列{cn}的前n項(xiàng)和,求xn=Tn+1-2Tn+Tn-1的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案