精英家教網 > 高中數學 > 題目詳情

【題目】如圖是某校舉行歌唱比賽時,七位評委為某位選手打出的分數的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數據的中位數和平均數依次為(

A.87,86
B.83,85
C.88,85
D.82,86

【答案】A
【解析】解:由莖葉圖知,去掉一個最高分93和一個最低分78后,
所剩數據82,83,87,88,90的中位數是87,
平均數是 ×(82+83+87+88+90)=86.
故選:A.
【考點精析】利用莖葉圖對題目進行判斷即可得到答案,需要熟知莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形和等邊三角形中, ,平面平面

(1)在上找一點,使,并說明理由;

(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,AD=AE,F是BC的中點,AF與DE交于點G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=

(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點,H為BC中點,求異面直線AB與FH所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線y=1所得線段的長度為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓CA,B兩點,交y軸于點M.點NM關于O的對稱點,⊙N的半徑為|NO|. 設DAB的中點,DE,DF與⊙N分別相切于點E,F,求EDF的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MACPA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某種信息傳輸過程中,用4個數字的一個排列(數字允許重復)表示一個信息,不同排列表示不同信息.若所用數字只有0和1,則與信息0110至多有兩個對應位置上的數字相同的信息個數為 ( )
A.10
B.11
C.12
D.15

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x)滿足對任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0,
(1)求f(1)和f(﹣1)的值;
(2)試判斷f(x)的奇偶性,并加以證明;
(3)若x≥0時f(x)為增函數,求滿足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.

查看答案和解析>>

同步練習冊答案