【題目】設(shè)函數(shù)f(x)=|2x-1|+|2x-a|+a,x∈R.
(1)當(dāng)a=3時(shí),求不等式f(x)>7的解集;
(2)對任意x∈R恒有f(x)≥3,求實(shí)數(shù)a的取值范圍.
【答案】(1) {x|x<0或x>2};(2) [2,+∞).
【解析】試題分析:(1)根據(jù)零點(diǎn)分段去掉絕對值寫出函數(shù)的表達(dá)式,進(jìn)而解出不等式;(2) 任意x∈R恒有f(x)≥3,即f(x)的最小值大于等于3,根據(jù)絕對值不等式求出最小值,解出a的范圍.
試題解析:(1)當(dāng)a=3時(shí),f(x)=
所以f(x)>7的解集為{x|x<0或x>2}.
(2)f(x)=|2x-1|+|a-2x|+a≥|2x-1+a-2x|+a=|a-1|+a,
由f(x)≥3恒成立,有|a-1|+a≥3,解得a≥2,
所以a的取值范圍是[2,+∞).
點(diǎn)睛: 兩數(shù)和差的絕對值的性質(zhì),特別注意此式,它是和差的絕對值與絕對值的和差性質(zhì),應(yīng)用此式來求某些函數(shù)的最值時(shí)一定要注意等號成立的條件. ,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)為單位圓上逆時(shí)針均勻分布的六個(gè)點(diǎn),現(xiàn)從這六個(gè)點(diǎn)中任選其中三個(gè)不同點(diǎn)構(gòu)成一個(gè)三角形,記該三角形的面積為隨機(jī)變量.
(1)求的概率;
(2)求的分布列及數(shù)學(xué)期望 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E,F分別是AB,AA1的中點(diǎn).
求證:(1)E,C,D1,F四點(diǎn)共面;
(2)CE,D1F,DA三線共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F,右頂點(diǎn)為A,設(shè)離心率為e,且滿足,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)的直線l與橢圓交于M,N兩點(diǎn),求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于命題:存在一個(gè)常數(shù),使得不等式對任意正數(shù),恒成立.
(1)試給出這個(gè)常數(shù)的值;
(2)在(1)所得結(jié)論的條件下證明命題;
(3)對于上述命題,某同學(xué)正確地猜想了命題:“存在一個(gè)常數(shù),使得不等式對任意正數(shù),,恒成立.”觀察命題與命題的規(guī)律,請猜想與正數(shù),,,相關(guān)的命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)悉遵義市紅花崗區(qū)、匯川區(qū)2017年現(xiàn)有人口總數(shù)為110萬人,如果年自然增長率為%,試解答以下問題:
(1)寫出經(jīng)過年后,遵義市人口總數(shù)(單位:萬人)關(guān)于的函數(shù)關(guān)系式;
(2)計(jì)算10年以后遵義市人口總數(shù)(精確到0.1萬人);
(3)計(jì)算經(jīng)過多少年后遵義市人口將達(dá)到150萬人(精確到1年)
(參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>D,若函數(shù)滿足條件:存在,使在上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com