【題目】設(shè)拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),且線段的中點(diǎn)坐標(biāo)為.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,為拋物線上的兩個(gè)動(dòng)點(diǎn)(異于點(diǎn)),且,求點(diǎn)的橫坐標(biāo)的取值范圍.
【答案】(1);(2).
【解析】
(1)設(shè)點(diǎn),由線段的中點(diǎn)坐標(biāo)可得出點(diǎn)的坐標(biāo),再代入拋物線的標(biāo)準(zhǔn)方程可得出關(guān)于的方程,解出正數(shù)的值,即可得出拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)、,求出直線的斜率,進(jìn)而求出直線的方程,將直線的方程與拋物線的標(biāo)準(zhǔn)方程聯(lián)立,可得出,可知該方程有解,由可求得的取值范圍,并進(jìn)行檢驗(yàn),由此可得出點(diǎn)的橫坐標(biāo)的取值范圍.
(1)依題意得,設(shè),由的中點(diǎn)坐標(biāo)為,得,
即,,所以,得,即,
所以拋物線的標(biāo)準(zhǔn)方程為;
(2)由題意知,設(shè),,則,
因?yàn)?/span>,所以,所在直線方程為,
聯(lián)立,
因?yàn)?/span>,得,即,
因?yàn)?/span>,即,故或.
經(jīng)檢驗(yàn),當(dāng)時(shí),不滿足題意;
所以點(diǎn)的橫坐標(biāo)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),分別為橢圓C的左、右焦點(diǎn)且.
(1)求橢圓C的方程;
(2)過P點(diǎn)的直線與橢圓C有且只有一個(gè)公共點(diǎn),直線平行于OP(O為原點(diǎn)),且與橢圓C交于兩點(diǎn)A、B,與直線交于點(diǎn)M(M介于A、B兩點(diǎn)之間).
(i)當(dāng)面積最大時(shí),求的方程;
(ii)求證:,并判斷,的斜率是否可以按某種順序構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,點(diǎn)是它的兩個(gè)頂點(diǎn),過原點(diǎn)且斜率為的直線與線段相交于點(diǎn),且與橢圓相交于兩點(diǎn).
(1)若,求的值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為1,E,F分別是,的中點(diǎn),交EF于點(diǎn)D,現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)四面體,使,,三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體中必有( )
A.平面EFG
B.設(shè)線段SF的中點(diǎn)為H,則平面SGE
C.四面體的體積為
D.四面體的外接球的表面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,且,點(diǎn)在橢圓內(nèi)部,點(diǎn)在橢圓上,則以下說法正確的是( )
A.的最小值為
B.橢圓的短軸長(zhǎng)可能為2
C.橢圓的離心率的取值范圍為
D.若,則橢圓的長(zhǎng)軸長(zhǎng)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為徹底打贏脫貧攻堅(jiān)戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計(jì)劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價(jià)0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價(jià)1.4元,則該農(nóng)戶種植冬瓜和茄子利潤(rùn)的最大值為( )
A.4萬元B.5.5萬元C.6.5萬元D.10萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某志愿者服務(wù)網(wǎng)站在線招募志愿者,當(dāng)報(bào)名人數(shù)超過計(jì)劃招募人數(shù)時(shí),將采用隨機(jī)抽取的方法招募志愿者,如表記錄了A,B,C,D四個(gè)項(xiàng)目最終的招募情況,其中有兩個(gè)數(shù)據(jù)模糊,記為a,b.
甲同學(xué)報(bào)名參加了這四個(gè)志愿者服務(wù)項(xiàng)目,記ξ為甲同學(xué)最終被招募的項(xiàng)目個(gè)數(shù),已知P(ξ=0),P(ξ=4).
(Ⅰ)求甲同學(xué)至多獲得三個(gè)項(xiàng)目招募的概率;
(Ⅱ)求a,b的值;
(Ⅲ)假設(shè)有十名報(bào)了項(xiàng)目A的志愿者(不包含甲)調(diào)整到項(xiàng)目D,試判斷Eξ如何變化(結(jié)論不要求證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com