【題目】已知數列{an}滿足 ,則使不等式a2016>2017成立的所有正整數a1的集合為( )
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}
科目:高中數學 來源: 題型:
【題目】在考試測評中,常用難度曲線圖來檢測題目的質量,一般來說,全卷得分高的學生,在某道題目上的答對率也應較高,如果是某次數學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數段,縱坐標為該分數段的全體考生在第1、2問的平均難度,則下列說法正確的是( )
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數學成績的好與壞
C.分數在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點為M,
(1)求過點M且到點P(0,4)的距離為2的直線l的方程;
(2)求過點M且與直線l3:x+3y+1=0平行的直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為、,上頂點為B,O為坐標原點,且向量與的夾角為.
求橢圓的方程;
設,點P是橢圓上的動點,求的最大值和最小值;
設不經過點B的直線l與橢圓相交于M、N兩點,且直線BM、BN的斜率之和為1,證明:直線l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構對春節(jié)燃放煙花爆竹的天數x與霧霾天數y進行統(tǒng)計分析,得出下表數據:
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;
(3)試根據(2)求出的線性回歸方程,預測燃放煙花爆竹的天數為的霧霾天數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于, 兩點, 是中點.
(Ⅰ)當與垂直時,求證: 過圓心.
(Ⅱ)當,求直線的方程.
(Ⅲ)設,試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com