已知函數(shù)f(x)=-x3bx2cxbc,

(1)若函數(shù)f(x)在x=1處有極值-,試確定b、c的值;

(2)在(1)的條件下,曲線yf(x)+m與x軸僅有一個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍;

(3)記g(x)=|(x)|(-1≤x≤1)的最大值為M,若M≥k對(duì)任意的bc恒成立,試求k的取值范圍.

(參考公式:x3-3bx2+4b3(x+b)(x-2b)2)

答案:
解析:

  解:(1)解. 2分

  若,

  上單調(diào)遞減,在處無(wú)極值;

  若,,,

  直接討論知,處有極大值,所以為所求. 4分

  (2)由(1),, 6分

  當(dāng),曲線軸僅有一個(gè)交點(diǎn). 8分

  因此,實(shí)數(shù)的取值范圍是. 9分

  (3).若,

  則是單調(diào)函數(shù),

  ,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/3565/0021/2c36a7697d09fc21d0569c2021d2708f/C/Image2293.gif" width=36 height=21>與之差的絕對(duì)值,所以. 11分

  若取極值,

  則,.

  若,

  ;

  若,,

  

  當(dāng),時(shí),上的最大值. 13分

  所以,的取值范圍是. 14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題

(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對(duì)任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=4x2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=若f(a)=,則a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題

  已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無(wú)實(shí)根,下列命題中:

    (1)方程f [f (x)]=x一定無(wú)實(shí)根;

    (2)若a>0,則不等式f [f (x)]>x對(duì)一切實(shí)數(shù)x都成立;

    (3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,則不等式f [f (x)]<x對(duì)一切x都成立;

    正確的序號(hào)有          .              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省南昌市高三第一次模擬測(cè)試卷理科數(shù)學(xué)試卷 題型:選擇題

已知函數(shù)f(x)=|lg(x-1)|-()x有兩個(gè)零點(diǎn)x1x2,則有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案