【題目】菜市房管局為了了解該市市民2018年1月至2019年1月期間購(gòu)買(mǎi)二手房情況,首先隨機(jī)抽樣其中200名購(gòu)房者,并對(duì)其購(gòu)房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖1所示的頻率分布南方匿,接著調(diào)查了該市2018年1月﹣2019年1月期間當(dāng)月在售二手房均價(jià)(單位:萬(wàn)元/平方米),制成了如圖2所示的散點(diǎn)圖(圖中月份代碼1﹣13分別對(duì)應(yīng)2018年1月至2019年1月).

(1)試估計(jì)該市市民的平均購(gòu)房面積

(2)現(xiàn)采用分層抽樣的方法從購(gòu)房耐積位于的40位市民中隨機(jī)取4人,再?gòu)倪@4人中隨機(jī)抽取2人,求這2人的購(gòu)房面積恰好有一人在的概率.

(3)根據(jù)散點(diǎn)圖選擇兩個(gè)模型進(jìn)行擬合,經(jīng)過(guò)數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為,并得到一些統(tǒng)計(jì)量的值,如表所示:

請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測(cè)2019年6月份的二手房購(gòu)房均價(jià)(精確到).

參考數(shù)據(jù):,,,,,,.參考公式:相關(guān)指數(shù)

【答案】(1)96;(2);(3)見(jiàn)解析

【解析】

1)利用組中值可求平均購(gòu)房面積.

(2)由分層抽樣可得在抽取的4人有3人位于,1人位于,枚舉后可得基本事件的總數(shù)和隨機(jī)事件中基本事件的個(gè)數(shù),從而得到所求的概率.

(3)根據(jù)相關(guān)系數(shù)的大小可得的擬合效果更好,從而可預(yù)測(cè)2019年6月份的二手房購(gòu)房均價(jià).

解:(1)

(2)設(shè)從位于的市民中抽取人,從位于的市民中抽取人,

由分層抽樣可知:,解得,

在抽取的4人中,記3名位于的市民為:,1名位于的市民為,

從這4人中隨機(jī)抽取2人,共有:

,故基本事件總數(shù)

其中恰有一人在的情況共有種,

設(shè)為“這2人的購(gòu)房面積恰好有一人在”,則

(3)設(shè)模型的相關(guān)指數(shù)分別為,,

,∴

∴模型的擬合效果更好.

2019年6月份對(duì)應(yīng)的

萬(wàn)元/平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線方程是,求函數(shù)上的值域;

(2)當(dāng)時(shí),記函數(shù),若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面上給定相異兩點(diǎn)A,B,設(shè)P點(diǎn)在同一平面上且滿足,當(dāng)時(shí),P點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱(chēng)這個(gè)圓為阿波羅尼斯圓,現(xiàn)有雙曲線),AB為雙曲線的左、右頂點(diǎn),C,D為雙曲線的虛軸端點(diǎn),動(dòng)點(diǎn)P滿足,面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓軸交于兩點(diǎn),設(shè)直線的方程為.

(1)當(dāng)直線與圓相切時(shí),求直線的方程;

(2)已知直線與圓相交于兩點(diǎn).(i),求直線的方程;(ii)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為,,,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),點(diǎn),過(guò)點(diǎn)的平行線交于點(diǎn).設(shè)點(diǎn)的軌跡為.

(Ⅰ)求曲線的方程;

(Ⅱ)已知直線與圓相切于點(diǎn),且與曲線相交于,兩點(diǎn),的中點(diǎn)為,求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù),如表所示:

單價(jià)(千元)

銷(xiāo)量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷(xiāo)量(百件)關(guān)于試銷(xiāo)單價(jià)(千元)的線性回歸方程

(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷(xiāo)量的估計(jì)值.當(dāng)銷(xiāo)售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷(xiāo)售數(shù)據(jù)稱(chēng)為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷(xiāo)售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中的估計(jì)值分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在正四棱錐P-ABCD中,側(cè)棱與底面成角為60°,且側(cè)面積為,則四棱錐P-ABCD的內(nèi)切球的表面積為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線)經(jīng)過(guò)點(diǎn),直線與拋物線有兩個(gè)不同的交點(diǎn)、,直線軸于,直線軸于.

(1)若直線過(guò)點(diǎn),求直線的斜率的取值范圍;

(2)若直線過(guò)點(diǎn),設(shè),,,求的值;

(3)若直線過(guò)拋物線的焦點(diǎn),交軸于點(diǎn),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在合作學(xué)習(xí)小組的一次活動(dòng)中,甲、乙、丙、丁、戊五位同學(xué)被隨機(jī)地分配承擔(dān),,,四項(xiàng)不同的任務(wù),每個(gè)同學(xué)只能承擔(dān)一項(xiàng)任務(wù).

(1)若每項(xiàng)任務(wù)至少安排一位同學(xué)承擔(dān),求甲、乙兩人不同時(shí)承擔(dān)同一項(xiàng)任務(wù)的概率;

(2)設(shè)這五位同學(xué)中承擔(dān)任務(wù)的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案