【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中點為H,證明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大小.
【答案】解:(1)∵底面ABCD是平行四邊形,AD=AB=2,=0,
∴底面ABCD是邊長為2的正方形,取AD的中點G,
連接HE,HG,GC,根據(jù)題意得HG=EC=1,且HG∥EC∥PD,
則四邊形EHGC是平行四邊形,
所以HE∥GC,HE平面ABCD,GC平面ABCD,
故HE∥平面ABCD
(2)如圖,
取PB的中點M,連接AC,DB交于點F,連接ME,MF,
作FK⊥PB于點K,容易得到∠AKF是二面角A﹣PB﹣D的平面角,
AF=,Rt△PDB~Rt△FKB,易得PK=,
從而tan,所以
由于點M是PB的中點,所以MF是△PDB的中位線,MF∥PD,且MF=,
MF=EC,且MF∥EC,故四邊形MFCE是平行四邊形,則ME∥AC,
又AC⊥平面PDB,則ME⊥平面PDB,ME平面PBE,
所以平面PBE⊥平面PDB,
所以二面角A﹣PB﹣E的大小就是二面角A﹣PB﹣D的大小與直二面角D﹣PB﹣E的大小之和
故二面角A﹣PB﹣E的大小為+=
【解析】(1)取AD的中點G,連接HE,HG,GC,證明四邊形EHGC是平行四邊形,推出HE∥GC,即可證明HE∥平面ABCD.
(2)如圖,取PB的中點M,連接AC,DB交于點F,連接ME,MF,作FK⊥PB于點K,∠AKF是二面角A﹣PB﹣D的平面角,通過Rt△PDB~Rt△FKB,求出 , 得到二面角A﹣PB﹣E的大小就是二面角A﹣PB﹣D的大小與直二面角D﹣PB﹣E的大小之和,求解二面角A﹣PB﹣E的大小。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),將函數(shù)y=f(x)的圖象向右平移 個單位長度后,所得圖象與原函數(shù)圖象重合ω最小值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且f′(x)>2f(x)(x∈R),f()=e(e為自然對數(shù)的底數(shù)),則不等式f(lnx)<x2的解集為( )
A.(0,)
B.(0,)
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=( )
A.12 B.14 C.16 D.18
【答案】B
【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14.
【題型】單選題
【結(jié)束】
9
【題目】等比數(shù)列{an}是遞減數(shù)列,前n項的積為Tn,若T13=4T9,則a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
(I)請完成列聯(lián)表
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過0.01的前提下認為成績與班級有關(guān)系?
參考公式和臨界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( 。
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+2=2an(n∈N*).
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an , 數(shù)列{}的前n項和為Tn , 證明:Tn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com