已知函數(shù)的導(dǎo)數(shù)為0的值也使值為0,則常數(shù)的值為(  )

A、0                            B、±3         

C、0或±3                       D、非以上答案

 

【答案】

C.

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013031209521631035599/SYS201303120952180916594267_DA.files/image001.png">,所以

=0得x=0或,

所以由x=0時(shí) ,y=0得=0,a=0;

時(shí),y==0得,a=0或a=±3,

綜上知a=0或a=±3,選C。

考點(diǎn):本題主要考查導(dǎo)數(shù)的運(yùn)算。

點(diǎn)評:典型題,導(dǎo)數(shù)公式要記熟,注意討論x=0或使函數(shù)值為0.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的導(dǎo)數(shù)為0的點(diǎn)稱為函數(shù)的駐點(diǎn),若點(diǎn)(1,1)為函數(shù)f(x)的駐點(diǎn),則稱f(x)具有“1-1駐點(diǎn)性”.
(1)設(shè)函數(shù)f(x)=-x+2
x
+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點(diǎn)性”
②求函數(shù)f(x)的單調(diào)區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點(diǎn)性”,給定x1,x2∈R,x1<x2,設(shè)λ為實(shí)數(shù),且λ≠-1,α=
x1+λx2
1+λ
,β=
x2+λx1
1+λ
,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的導(dǎo)數(shù)為0的點(diǎn)稱為函數(shù)的駐點(diǎn),若點(diǎn)(1,1)為函數(shù)f(x)的駐點(diǎn),則稱f(x)具有“1—1駐點(diǎn)性”.

(1)設(shè)函數(shù)f(x)=-x+2+alnx,其中a≠0。

①求證:函數(shù)f(x)不具有“1—1駐點(diǎn)性”;②求函數(shù)f(x)的單調(diào)區(qū)間

(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1—1駐點(diǎn)性”,給定x1,x2ÎR,x1x2,設(shè)λ為實(shí)數(shù),且λ≠-1,α=β=,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省無錫市高考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

函數(shù)的導(dǎo)數(shù)為0的點(diǎn)稱為函數(shù)的駐點(diǎn),若點(diǎn)(1,1)為函數(shù)f(x)的駐點(diǎn),則稱f(x)具有“1-1駐點(diǎn)性”.
(1)設(shè)函數(shù)f(x)=-x+2+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點(diǎn)性”
②求函數(shù)f(x)的單調(diào)區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點(diǎn)性”,給定x1,x2∈R,x1<x2,設(shè)λ為實(shí)數(shù),且λ≠-1,α=,β=,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的導(dǎo)數(shù)為0的值也使值為0,則常數(shù)的值為    (    )

A、0      B、      C、0或       D、非以上答案

查看答案和解析>>

同步練習(xí)冊答案