【題目】某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為xx≥10)層,則每平方米的平均建筑費(fèi)用為56048x(單位:元).

1)寫(xiě)出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;

2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=購(gòu)地總費(fèi)用/建筑總面積)

【答案】1y56048xx≥10x∈N*).(2)當(dāng)該樓房建造15層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少,最少值為2000

【解析】

1)依題意得

y=(56048x)+

56048xx≥10,x∈N*).

2∵x>0∴48x

≥21440,

當(dāng)且僅當(dāng)48x,即x15時(shí)取到,

此時(shí),平均綜合費(fèi)用的最小值為56014402000(元).

當(dāng)該樓房建造15層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少,最少值為2000

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績(jī)頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分;

3)若這200名學(xué)生的數(shù)學(xué)成績(jī)中,某些分?jǐn)?shù)段的人數(shù)與英語(yǔ)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如表所示,求英語(yǔ)成績(jī)?cè)?/span>的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),過(guò)軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )

A. 的極小值點(diǎn),則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對(duì)稱圖形

D. 的極值點(diǎn),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),則使得的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有編號(hào)為1,2,3…n的n個(gè)學(xué)生,入座編號(hào)為1,2,3…n的n個(gè)座位,每個(gè)學(xué)生規(guī)定坐一個(gè)座位, 設(shè)學(xué)生所坐的座位號(hào)與該生的編號(hào)不同的學(xué)生人數(shù)為, 已知時(shí), 共有6種坐法.

(1)求的值;

(2)求隨機(jī)變量的概率分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角所對(duì)的邊分別為,,已知.

(Ⅰ)求;

(Ⅱ)若,且的面積為,求的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案