【題目】下列選項(xiàng)中說(shuō)法正確的是( 。
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 , 滿足 ,則 與 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“x0∈R,x02﹣x0≤0”的否定是“x∈R,x2﹣x≥0”
【答案】A
【解析】解:對(duì)于A,若p∨q為真命題,則p,q至少有一個(gè)為真命題,若p∧q為真命題,則p,q都為真命題,則“p∨q為真命題”是“p∧q為真命題”的必要不充分條件,正確;
對(duì)于B,根據(jù)向量數(shù)量積的定義,向量 , 滿足 ,則 與 的夾角為銳角或同向,故錯(cuò);
對(duì)于C,如果m2=0時(shí),am2≤bm2成立,a≤b不一定成立,故錯(cuò);
對(duì)于D,“x0∈R,x02﹣x0≤0”的否定是“x∈R,x2﹣x>0”,故錯(cuò).
所以答案是:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù)f(x)=(m2﹣1) 上為增函數(shù);命題q:函數(shù)g(x)=x2﹣2elnx﹣m有零點(diǎn).
(I)若p∨q為假命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣ )(ω>0)的圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為 .
(1)求w的值;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x﹣1,求g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點(diǎn).
(1)若M是線段EF的中點(diǎn),證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點(diǎn),設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 下列四個(gè)命題:
①f(f(1))>f(3); ② x0∈(1,+∞),f'(x0)=-1/3;
③f(x)的極大值點(diǎn)為x=1; ④ x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1
其中正確的有(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與 =(2,sinC)共線,求邊長(zhǎng)b和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個(gè)對(duì)稱中心是( 。
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),曲線C的參數(shù)方程: (α為參數(shù)),且直線交曲線C于A,B兩點(diǎn).
(Ⅰ)將曲線C的參數(shù)方程化為普通方程,并求θ= 時(shí),|AB|的長(zhǎng)度;
(Ⅱ)已知點(diǎn)P:(1,0),求當(dāng)直線傾斜角θ變化時(shí),|PA||PB|的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +2x+sinx(x∈R),若函數(shù)y=f(x2+2)+f(﹣2x﹣m)只有一個(gè)零點(diǎn),則函數(shù)g(x)=mx+ (x>1)的最小值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com