【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心為O,點E是側(cè)棱BB1上的一個動點.有下列判斷: ①直線AC與直線C1E是異面直線;②A1E一定不垂直于AC1;③三棱錐E﹣AA1O的體積為定值;④AE+EC1的最小值為2 .
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:如圖,
對于①,∵直線AC經(jīng)過平面BCC1B1內(nèi)的點C,而直線C1E在平面BCC1B1內(nèi)不過C,∴直線AC與直線C1E是異面直線,故①正確;
對于②,當(dāng)E與B重合時,AB1⊥A1B,而C1B1⊥A1B,∴A1B⊥平面AB1C1,則A1E垂直AC1,故②錯誤;
對于③,由題意知,直三棱柱ABC﹣A1B1C1的外接球的球心為O是AC1 與A1C 的交點,則△AA1O的面積為定值,由BB1∥平面AA1C1C,∴E到平面AA1O的距離為定值,∴三棱錐E﹣AA1O的體積為定值,故③正確;
對于④,設(shè)BE=x,則B1E=2﹣x,∴AE+EC1= .由其幾何意義,即平面內(nèi)動點(x,1)與兩定點(0,0),(2,0)距離和的最小值知,其最小值為2 ,故④正確.
∴正確命題的個數(shù)是3個.
故選:C.
【考點精析】根據(jù)題目的已知條件,利用棱柱的結(jié)構(gòu)特征的相關(guān)知識可以得到問題的答案,需要掌握兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓P過A(﹣8,0),B(2,0),C(0,4)三點,圓Q:x2+y2﹣2ay+a2﹣4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設(shè)f(n)表示前n年的純利潤總和(f(n)=前n年的總收入﹣前n年的總支出﹣投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方法:①年平均純利潤達(dá)到最大時,以48萬元出售該廠;②純利潤總和達(dá)到最大時,以16萬元出售該廠,問哪種方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項為1的數(shù)列{an}的前n項和為Sn , 若點(Sn﹣1 , an)(n≥2)在函數(shù)y=3x+4的圖象上. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=log2 ,且bn=2n+1cn , 其中n∈N* , 求數(shù)列{cn}的前前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差大于0的等差數(shù)列{an}中,2a7﹣a13=1,且a1 , a3﹣1,a6+5成等比數(shù)列,則數(shù)列{(﹣1)n﹣1an}的前21項和為( )
A.21
B.﹣21
C.441
D.﹣441
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x﹣3y﹣6=0,點T(﹣1,1)在AD邊所在直線上. (Ⅰ)求AD邊所在直線的方程;
(Ⅱ)求矩形ABCD外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植果樹,但需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿足果樹生長的需要,該光源照射范圍是 ,點E,F(xiàn)在直徑AB上,且 .
(1)若 ,求AE的長;
(2)設(shè)∠ACE=α,求該空地種植果樹的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(2x+ )的圖象向右平移 個最小正周期后,所得圖象對應(yīng)的函數(shù)為( )
A.y=sin(2x﹣ )
B.y=sin(2x﹣ )
C.y=sin(2x﹣ )
D.y=sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,A,B的坐標(biāo)分別為(-1,2),(4,3),AC的中點M在y軸上,BC的中點N在x軸上.
(1)求點C的坐標(biāo);
(2)求直線MN的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com