已知點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,則w=a-2b的取值范圍是( 。
A、[-
2
3
,
1
2
]
B、(-
2
3
,0)
C、(0,
1
2
D、(-
2
3
1
2
考點:簡單線性規(guī)劃的應(yīng)用,二元一次不等式的幾何意義,直線的斜率
專題:不等式的解法及應(yīng)用
分析:點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),那么把這兩個點代入2x+3y-1,它們的符號相反,結(jié)合a>0,b>0,畫出可行域,則w=a-2b的取值范圍.
解答: 解:點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,
可得:
2a+3b-1<0
a>0
b>0
,可行域如圖:w=a-2b經(jīng)過可行域的A與B時分別取得最大值與最小值.
∵A(0,
1
3
),B(
1
2
,0
),
∴wA=-
2
3
,wB=
1
2
,∴w∈(-
2
3
,
1
2
).
故選:D.
點評:本題考查了線性規(guī)劃問題、直線的斜率計算公式及其單調(diào)性,考查了問題的轉(zhuǎn)化能力和推理能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a2=3,a6=11,則{an}的公差d 為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二項式(
x
+
3
3x
n的展開式中的常數(shù)項是270,則該展開式中的二項式系數(shù)之和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)y=f(x),當(dāng)x∈[0,∞)時,f(x)=x-1,則f(x-1)<0的解集為( 。
A、{x|-1<x<1}
B、{x|1<x<2 }
C、{x|0<x<2}
D、{x|-2<x<0或0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,輸出的a的值為(  )
A、7B、9C、11D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖所圖所示,則它的表面積為( 。
A、20+
5
π
B、24-π
C、24+(
5
-1)π
D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=(3m-2)+mi(m∈R,i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點不可能位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件
3x-y-2≤0
x-y≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為2,當(dāng)
1
a
+
1
b
的最小值為m時,則y=sin(mx+
π
3
)的圖象向右平移
π
6
后的表達(dá)式為(  )
A、y=sinx
B、y=sin2x
C、y=sin(x+
π
6
D、y=sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有三個小球全部隨機放入三個盒子中,設(shè)隨機變量ξ為三個盒子中含球最多的盒子里的球數(shù),則ξ的數(shù)學(xué)期望Eξ為( 。
A、
17
9
B、
19
9
C、2
D、
7
3

查看答案和解析>>

同步練習(xí)冊答案